Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn có thheer viết :
1;2;3;4;......;497;498;499;500
giúp mik với các bạn ơi ,mik đang cực kì gấp
a)9
b)20
c)480
d)450
phần e bn khác sẽ giải,mk đang có vc nên giúp dc bn đến đây thôi,sorry!
Câu 1 : Số nào trong các số sau chia hết cho 5 mà không chia hết cho 2?
A) 222 B) 2015 C) 118 D) 990
Câu 2 : Tập hợp tất cả các ước của 15 là :
A) { 1;3;15} B) { 1;3;5} C) { 3;5;15} D) { 1;3;5;15}
Câu 3 : ƯCLN (18;12) là :
A) 36 B) 12 C) 6 D) 30
Câu 4 : Số nào chia hết cho 9:
A) 386 B) 207 C) 128 D) 129
Tk cho mk với!!!!!!!!!!!!!!!!!
còn tên Minh Trân là tên chị em ba em người mỹ nên đặt tên cho em là jollei MinDi còn mẹ em người việt nên đặt tên cho chi của em là Minh Trân
Bài 1
Chia hết cho 2 và 5 : 100 ; 150 ; 980 .....
Chia hết cho 2 và 3 : 966 ; 678 ; 264 .....
Chia hết cho 5 và 9 : 270 ; 360 ; 450 .....
Chia hết cho 2,3,5,9 : 360 ; 720 ; 630 .....
Không chia hết cho 2,3,5,9 : 782 ; 913 ; 697 ....
Không chia hết cho 2 và 9 : 265 ; 132 ; 453 ....
BÀi 2
A : Chia hết cho 5 nhưng không chia hết cho 2
B :Chia hết cho 2 nhưng không chia hết cho 5
C : Chia hết cho 2 nhưng không chia hết cho 5
D : Chia hết cho 5 nhưng không chia hết cho 2
a) Để \(-5:\left(x-4\right)\)là số nguyên
\(\Rightarrow x-4\inƯ\left(-5\right)\in\left\{\pm1; \pm5\right\}\)
- Ta có bảng giá trị:
\(x-4\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(x\) | \(3\) | \(5\) | \(-1\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1; 3; 5; 9\right\}\)
b) Ta có: \(x+8=\left(x+7\right)+1\)
- Để \(x+8⋮x+7\)\(\Rightarrow\)\(\left(x+7\right)+1⋮x+7\)mà \(x+7⋮x+7\)
\(\Rightarrow\)\(1⋮x+7\)\(\Rightarrow\)\(x+7\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+7=1\)\(\Leftrightarrow\)\(x=1-7=-6\left(TM\right)\)
+ \(x+7=-1\)\(\Leftrightarrow\)\(x=-1-7=-8\left(TM\right)\)
Vậy \(x\in\left\{-1; -8\right\}\)
c) Ta có: \(2x-9=\left(2x-10\right)+1=2.\left(x-5\right)+1\)
- Để \(2x-9⋮x-5\)\(\Rightarrow\)\(2.\left(x-5\right)+1⋮x-5\)mà \(2.\left(x-5\right)⋮ x-5\)
\(\Rightarrow\)\(1⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x-5=1\)\(\Leftrightarrow\)\(x=1+5=6\left(TM\right)\)
+ \(x-5=-1\)\(\Leftrightarrow\)\(x=-1+5=4\left(TM\right)\)
Vậy \(x\in\left\{4; 6\right\}\)
d) Ta có: \(5x+2=\left(5x+5\right)-3=5.\left(x+1\right)-3\)
- Để \(5x+2⋮x+1\)\(\Rightarrow\)\(5.\left(x+1\right)-3⋮x+1\)mà \(5.\left(x+1\right)⋮x+1\)
\(\Rightarrow\)\(3⋮x+1\)\(\Rightarrow\)\(x+1\inƯ\left(3\right)\in\left\{\pm1; \pm3\right\}\)
- Ta có bảng giá trị:
\(x+1\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(-2\) | \(0\) | \(-4\) | \(2\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-2; 0; 2\right\}\)
-8(-7)+(-3).(-5)-(-4).9+2(-6)
=35+15-(-36)+(-12)
=74
15(-3)-(-7).(+2)+4.(-6)-7(-9)
=-45-(-14)+ (-24)-(-63)
8
n+15 chia het cho n-2
n-2+17 chia het cho n-2
suy ra 17 chia hết cho n-2
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
mấy cau sau tuong tu
a)
gọi 3 số chẵn liên tiếp là 2x,4x,6x( x là số tự nhiên)
ta có 2x+4x+6x=12x chia hết cho 6
=> Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b)
gọi 3 số lẻ liên tiếp là 3k-1 , 3k , 3k+1( k là số tự nhiên)
ta có 3k-1+3k+3k+1=9k chia hết cho 3 nhưng không chia hết cho 2
=> Tổng ba số lẻ liên tiếp ko chia hết cho 6
c)
a chia hết cho b=> a=b.x(x là số tự nhiên)
b chia hết cho c=> b= c.y(y là số tự nhiên)
thay b=c.y, ta có a= c.y.x chia hết cho c
=> Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d)
a chia hết cho 7=> a = 7x ( x là số tự nhiên)
b chia hết cho 7=> b=7y(y là số tự nhiên)
a-b=7x7t=7(x-y) chia hết cho 7
=> Nếu a và b chia hết cho 7 có cùng số dư thì hiệu a - b chia hết cho 7
học tốt
a) Gọi 3 số chẵn liên tiếp lần lượt là 2n, 2n+2, 2n+4
Tổng của ba số chẵn liên tiếp là: 2n + 2n+2 + 2n+4
= 6n+6
= 6(n+1) chia hết cho 6
Vậy tổng của ba số chẵn liên tiếp thì chia hết cho 6
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
ba,*15 có số cuối là 5
=>*15 luôn chia hết cho 5(1)
*15 có chữ số cuối là 5
=>*15 không chia hết cho 2(2)
Từ (1) (2)
=> Không có * thích hợp
a, ko có số nào thỏa mãn vì tận cùng là 5
b, để * 37 chia hết cho 3
thì ( * + 3 + 7 ) chia hết cho 3
hay ( * + 10 ) chia hết cho 3
\(\Rightarrow\)* = { 2 ; 5; 8 }
vậy ta có các số 237; 537 ; 837 chia hết ch 3
c, để 5*94 chia hết cho 3 và 9
thì ( 5 + * + 9 + 4 ) chia hết cho 3 ,9
hay ( 18 + * ) chia hết cho 3 ,9
\(\Rightarrow\) * = { 0 ; 9 }
vậy ta có các số 5094; 5994 chia hết cho 3 ,9
d, để *3747* chia hết cho 2,5thì tận cùng bằng 0
để *37470 chia hết cho 3, 9
thì ( * + 3 +7 + 4 + 7 + 0 )chia hết cho 3 ,9
hay ( * + 21 ) chia hết cho 3, 9
\(\Rightarrow\) * = { 6 }
vậy ta có số 637470 chia hết cho cả 2 ,3 ,5 ,9
e, để 1*5 chia hết cho 2 ko có trường hợp nào thỏa mãn
để 1* 5 chia hết cho 5 thì * = { 0; 1 ;.....; 9 }
vậy * = { 0;1;..;9}
Đáp án cần chọn là: C