Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số nguyên liên tiếp là a và a + 1.
Tích của chúng là a.(a + 1)
-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.
-Nếu a = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2 + 6k + 3k + 2 chia cho 3 dư 2.
-Nếu a = 3k + 2 thì a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2 + 9k + 3k + 3 chia hết cho 3.
Số (-3)20 chia hết cho 3 nên (-3)20 + 1 chia cho 3 dư 1. Do đó (-3)20 + 1 không phải là tích của hai số nguyên liên tiếp.
(-3)20 có tận cùng là chữ số 1 cộng với 1 nữa thì có tận cùng là chữ số 2. Vậy cũng có thể có cũng có thể không. Theo mình thì là không nhưng bạn nên xem lại đề bài !!!~~
giả sử tồn tại 2 số thỏa mãn
vì \(\left(-3\right)^{20}+1\) không chi hết cho 3=> cả 2 số đó đều k chia hết cho 3
=> tích 2 số đó là \(\left(3a-1\right)\left(3a+1\right)=9a^2-1\equiv2\left(mod3\right)\)
mà \(\left(-3\right)^{20}+1\equiv1\left(mod3\right)\)
=> vô lí=> điều giả sử sai=> không tồn tạ 2 số nào nhứ thế
Gọi 2 số nguyên liên tiếp là a và a + 1.
Tích của chúng là a.(a + 1)
-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.
-Nếu a = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2 + 6k + 3k + 2 chia cho 3 dư 2.
-Nếu a = 3k + 2 thì a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2 + 9k + 3k + 3 chia hết cho 3.
Số (-3)20 chia hết cho 3 nên (-3)20 + 1 chia cho 3 dư 1. Do đó (-3)20 + 1 không phải là tích của hai số nguyên liên tiếp.
1. thuộc P là thuộc gì ?
2. Có thể có có thể không, tùy vào p.
Không phải là số liên tiếp
Theo link này sẽ chi tiết hơn : https://h.vn/hoi-dap/question/22509.html