\(2^{11}-1\) là hợp số hay nguyên tố ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

chắc là nguyên tố rồi đó

13 tháng 11 2017

hợp số

28 tháng 10 2017

Đặt A = 52n2−6n+2−12=25n2−3n+1−12≡12n2−3n+1−12(mod13)52n2−6n+2−12=25n2−3n+1−12≡12n2−3n+1−12(mod13)

                    =>12n2−3n+1−12=12.(12n(n−3)−1)12n2−3n+1−12=12.(12n(n−3)−1)

                   (12n(n−3)−1)(12n(n−3)−1) chia luôn chia 13 dư 1 do n(n-3) luôn chia hết cho 2

                   => 52n2−6n+2−12⋮1352n2−6n+2−12⋮13 mà A lại là số nguyên tố nên A= 13 

                  =>  52n2−6n+2=2552n2−6n+2=25 => n =3

               Vậy n = 3

28 tháng 10 2017

n23n+1=n2n2n+1n2−3n+1=n2−n−2n+1 là số lẻ nên ta có 52n26n+21211n23n+10(mod13)52n2−6n+2−12≡1−1n2−3n+1≡0(mod13)

Do đó 52n26n+212=1352n26n+2=252n26n+2=2n=052n2−6n+2−12=13⇔52n2−6n+2=25⇔2n2−6n+2=2⇔n=0 hoặc n=3

24 tháng 7 2016

a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài 

Xét với p > 3 , ta biểu diễn : 

\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.

Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3

\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì  \(p^2+8\)là số nguyên tố lớn hơn 3) 

Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)

b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.

Với p là số nguyên tố, p > 3 : 

Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3

Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3 

Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3

=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)

Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)

16 tháng 4 2019

2.\(P=\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)

        \(=\frac{x+1}{2x+5}+1+\frac{x+2}{2x+4}+1+\frac{x+3}{2x+3}+1-3\)

          \(=\frac{3x+6}{2x+5}+\frac{3x+6}{2x+4}+\frac{3x+6}{2x+3}-3\)

           \(=\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân vế với vế của 3 BĐT trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\)

Áp dụng BĐT \(\left(1\right)\)ta được:

\(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\ge\frac{9}{6x+12}\)

\(\Leftrightarrow\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\ge3\left(x+2\right).\frac{9}{6\left(x+2\right)}-3\)

\(\Leftrightarrow P\ge\frac{3}{2}\left(đpcm\right)\)

5 tháng 10 2016

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

30 tháng 9 2016

làm ơn giải hộ mình nhanh lên

16 tháng 7 2019

\(B=x^4-4x^3-2x^2+12x+9\)

\(=\left(x^4-2x^3-3x^2\right)-\left(2x^3-4x^2-6x\right)-\left(3x^2-6x-9\right)\)

\(=x^2\left(x^2-2x-3\right)-2x\left(x^2-2x-3\right)-3\left(x^2-2x-3\right)\)

\(=\left(x^2-2x-3\right)^2=\left(x^2+x-3x-3\right)^2=\left(x+1\right)^2\left(x-3\right)^2\)

Hok tốt !

\(n^3+n+2\)

\(=n^3-n+2n+2\)

\(=n.\left(n^2-1\right)+2.\left(n+1\right)\)

\(=n.\left(n-1\right).\left(n+1\right)+2.\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2-n+2\right)\)

\(\Rightarrow n^3+n+2\)là hợp số với mọi \(n\inℕ^∗\)

\(\Rightarrowđpcm\)

17 tháng 11 2019

Ta có: \(n^3+n+2\)

\(=n^3-n+2n+2\)

\(=n\left(n^2-1\right)+2\left(n+1\right)\)

\(=n\left(n+1\right)\left(n-1\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2-n\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2-n+2\right)\)

Ta có: \(n^2-n+2=n^2-n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Lại có: \(n^2-n=n\left(n-1\right)\)(tích 2 số tự nhiên liên tiếp chẵn nên \(n^2-n+2\)chẵn)

\(\Rightarrow n^2-n+\frac{1}{2}\)là số dương chẵn

Mà \(n+1>1\)(Vì n dương) nên \(\left(n+1\right)\left(n^2-n+2\right)\)là số tự nhiên chẵn

Vậy \(\left(n+1\right)\left(n^2-n+2\right)\)là hợp số

hay \(n^3+n+2\)là hợp số