Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: 1020 = 10000...000 (trong đó số 10000...000 có 20 c/s 0)
=> 1020 có tổng của các c/s là 1
Mà 1 chia 3 và 9 đều dư 1
=> 1020 chia 3 và 9 dư 1.
=> A-28 chia hết cho 42
=> a=42t +28
=>A= 7 * ( 6t+4)
=> A chia hết cho 7
+. A ko chia hết cho 6
Gọi thương là q
=>A=42*q+28
vì 42q chia hết cho 6
28 ko chia hết cho 6
=>A chia hết cho 6
vì 42q chia hết cho 7
28 chia hết cho 7
=>A chia hết cho 7
Ta có:
\(10^1+10^2+10^3+...+10^{100}\)
\(=10+\left(10^2+10^3+10^4\right)+\left(10^5+10^6+10^7\right)+...+\left(10^{98}+10^{99}+10^{100}\right)\)
\(=10+10^2\left(1+10+10^2\right)+10^5\left(1+10+10^2\right)+...+10^{98}\left(1+10+10^2\right)\)
\(=10+10^2\cdot111+10^5\cdot111+...+10^{98}\cdot111\)
\(=10+\left(10^2\cdot111+10^5\cdot111+...+10^{98}\cdot111\right)\)
\(=10+111\left(10^2+10^5+...+10^{98}\right)\)
Do \(10^2+10^5+...+10^{98}\in N\) => 111 ( 102 + 105 + ... + 1098 ) chia hết cho 111 ( vì 111 chia hết cho 111 )
Mà 10 chia cho 111 dư 10 => 10 + 111 ( 102 + 105 + ... + 1098 ) chia cho 111 dư 10
Vậy 101 + 102 + 103 + ... + 10100 chia cho 111 dư 10.
Ta có:
10 1 (mod 9)
=> 102009 12009 (mod 9)
=> 102009 1 (mod 9)
=> 102009 chia 9 dư 1 nên trừ 1 chia hết cho 9
Mà 9 chia hết cho 3 nên số trên cũng chia hết cho 3
Ta có dãy số để biểu hiện những số đã chia hết cho 5 từ 1 đến 1000 :
5 ; 10 ; 15 ; 20; 25;....1000
SSH của dãy số trên là
( 1000 - 5 ) :5 +1 = 200 số hạng
tổng của 10^18 + 8 =( 10 +8)^18
= 18 ^ 18
Trong đó 18 chia hết cho 2 và 3 nên tổng 10^18 chia hết cho 2 và 3
c cứ tương tự
d;
Ta có ab-ba ( với a >b )
vd : 21 -12 = 9
vậy ab-ba chia hết cho 9
vì x + 16 chia hết cho x + 1 nên
x + 16 = (x + 1 ) + 15 ( x chia hết cho 1 )
suy ra 15 phải chia hết cho x+1 ( 15 là B của x + 1)
Và ngược lại x + 1 là Ư(15)
Ta có Ư ( 15 ) = { 1 ; 3 ; 5; 15 }
do x+1 nên ta biết { 1 - 1 ; 3 - 1 ; 5 - 1 ; 15 - 1 }
Sẽ có kết quả lần lượt sau : 0 ; 2 ; 4 ; 14
Vậy x thuộc { 0 ; 2 ; 4 ; 14 }
\(10^3-7=1000-7=993\)
Mà : \(9+9+3=21\) và \(21\) chỉ chia hết cho 3 không chia hết cho 9 nên => 103 - 7 chia hết cho 3 không chia hết cho 9
103 - 7 = 1000 - 7
= 993
Ta có: ( 9 + 9 + 3) = 21 chỉ chia hết cho 3 ko chia hết cho 9