K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: sinx=sin(2x+45 độ)

=>x=2x+45 độ+k*360 độ hoặc x=-2x+135 độ+k*360 độ

=>-x=45 độ+k*360 độ hoặc 3x=135 độ+k*360 độ

=>x=-45 độ-k*360 độ hoặc x=45 độ+k*120 độ

b: cosx(x-15 độ)-căn 3=0

=>cos(x-15 độ)=căn 3>1

=>PTVN

c: 3*cos(x-pi/3)=căn 7

=>cos(x-pi/3)=căn 7/3

=>x-pi/3=arccos(căn 7/3)+k2pi hoặc x-pi/3=-arccos(căn 7/3)+k2pi

=>x=arccos(căn 7/3)+pi/3+k2pi hoặc x=-arccos(căn 7/3)+pi/3+k2pi

24 tháng 7 2023

a gõ latex tốt hơn đó ạ, nhìn dễ hơn..

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

8 tháng 8 2018

ta có : \(sin2x=\dfrac{\sqrt{2}}{2}=sin\dfrac{\pi}{4}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{4}+k2\pi\\2x=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+k\pi\\2x=\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\) (\(k\in Z\))

+) \(x=\dfrac{\pi}{8}+k\pi\) ; \(x\in\left[0,2\pi\right]\) \(\Rightarrow0\le\dfrac{\pi}{8}+k\pi\le2\pi\) \(\Leftrightarrow\dfrac{-\pi}{8}\le k\pi\le\dfrac{15\pi}{8}\) \(\Leftrightarrow\dfrac{-1}{8}\le k\le\dfrac{15}{8}\) \(\Rightarrow k=0;k=1\)

\(\Rightarrow x=\dfrac{\pi}{4};x=\dfrac{\pi}{4}+\pi=\dfrac{5\pi}{4}\)

+) \(x=\dfrac{3\pi}{8}+k\pi\) \(x\in\left[0,2\pi\right]\) \(\Rightarrow0\le\dfrac{3\pi}{8}+k\pi\le2\pi\) \(\Leftrightarrow\dfrac{-3\pi}{8}\le k\pi\le\dfrac{13\pi}{8}\) \(\Leftrightarrow\dfrac{-3}{8}\le k\le\dfrac{13}{8}\) \(\Rightarrow k=0;k=1\)

\(\Rightarrow x=\dfrac{3\pi}{4};x=\dfrac{3\pi}{4}+\pi=\dfrac{7\pi}{4}\)

vậy\(x=\dfrac{\pi}{4};x=\dfrac{\pi}{4}+\pi=\dfrac{5\pi}{4}\)

\(;x=\dfrac{3\pi}{4};x=\dfrac{3\pi}{4}+\pi=\dfrac{7\pi}{4}\) bạn có thể để như thế này còn không bn có thể gôm nghiệm bằng đường tròn lượng giác nha .

NV
13 tháng 9 2021

ĐKXĐ:

a. \(cos\left(x-\dfrac{2\pi}{3}\right)\ne0\Rightarrow x-\dfrac{2\pi}{3}\ne\dfrac{\pi}{2}+k\pi\Rightarrow x\ne\dfrac{\pi}{6}+k\pi\)

b. \(sin\left(x+\dfrac{\pi}{6}\right)\ne0\Rightarrow x+\dfrac{\pi}{6}\ne k\pi\Rightarrow x\ne-\dfrac{\pi}{6}+k\pi\)

c. \(\dfrac{1+x}{2-x}\ge0\Rightarrow-1\le x< 2\)

10 tháng 10 2023

Mn ơi cứu tui

1: Sai:

sin(180-x)=sinx

2: Sai vì tan x*cot x=1

3: Đúng

24 tháng 6 2017

b) Ta có:

\(y^2=\left(sinx\sqrt{cosx}+cosx\sqrt{sinx}\right)^2\le\left(sin^2x+cos^2x\right).\left(sinx+cosx\right)\)

(Áp dụng BĐT Bunhiacopxki)

\(\Leftrightarrow y^2\le sinx+cosx\Leftrightarrow y^2\le\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\le\sqrt{2}\) (Do \(sin\alpha\le1\)

\(\Rightarrow y\le\sqrt[4]{2}\)

Vậy max y = \(\sqrt[4]{2}\) \(\Leftrightarrow\dfrac{\sqrt{cosx}}{sinx}=\dfrac{\sqrt{sinx}}{cosx}\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\) (k\(\in\)Z)

Hàm số không có giá trị nhỏ nhất.