Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(1-sin^2x+1-2sin^2x+sinx+2=0\)
\(\Leftrightarrow-3sin^2x+sinx+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
b. ĐKXĐ; ...
\(5tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow5tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{2}{5}\right)+k\pi\end{matrix}\right.\)
e.
Ko rõ vế phải
f.
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)=1-\dfrac{3}{4}sin^22x\)
=>\(1-\dfrac{3}{2}\cdot sin^22x=1-\dfrac{3}{4}sin^22x\)
=>\(sin^22x=0\)
=>2x=kpi
=>x=kpi/2
Nhân 2 vế với \(sin4x\) sau đó tách:
\(\frac{sin4x}{cosx}+\frac{sin4x}{sin2x}=\frac{2sin2x.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}=\frac{4sinx.cosx.cos2x}{cosx}+\frac{2sin2x.cos2x}{sin2x}\)
Rồi rút gọn
\(cos^2x-\sqrt{3}sin2\text{x}=1+sin^2x\\ \Leftrightarrow cos2x-\sqrt{3}sin2\text{x}=1\\ \Leftrightarrow\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2\text{x}=\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos2x-sin\frac{\pi}{3}\cdot sin2\text{x}=\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos2x-sin\frac{\pi}{3}\cdot sin2\text{x}=\frac{1}{2}\\ \Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{3}+a2\pi\\2x+\frac{\pi}{3}=-\frac{\pi}{3}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=a\pi\\x=-\frac{\pi}{3}+b\pi\end{matrix}\right.\)