K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2021

\(\Leftrightarrow sin5x+sinx-\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow2sin3x.cos2x-cos2x=0\)

\(\Leftrightarrow cos2x\left(2sin3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin3x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\3x=\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

17 tháng 9 2021

\(sin5x+sinx+2sin^2x=1\)

\(\Leftrightarrow\left(sin5x+sinx\right)-\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow2sin3x.cos2x-cos2x=0\)

\(\Leftrightarrow cos2x\left(2sin3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin3x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\end{matrix}\right.\)

Vậy...

4 tháng 9 2018

sin3x + 1=2sin22x

<=> sin3x + 1 = 2\(\dfrac{1-cos4x}{2}\)

<=> sin3x + 1 = 1 - cos4x

<=> sin3x = -cos4x

<=> sin3x + cos4x = 0

<=> \(\dfrac{\sqrt{2}}{2}\)sin3x + \(\dfrac{\sqrt{2}}{2}\)cos4x = 0 (chia 2 vế cho \(\sqrt{2}\)).

<=> cos\(\dfrac{\pi}{4}\)sin3x + sin\(\dfrac{\pi}{4}\)cos4x = 0

<=> sin (3x+\(\dfrac{\pi}{4}\)) = 0

<=> sin(3x+\(\dfrac{\pi}{4}\)) = sin0

<=> \(\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=0+k2\pi\\3x+\dfrac{\pi}{4}=\pi-0+k2\pi\end{matrix}\right.\)(k\(\in\)Z)

<=>\(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{12}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(k\(\in\)Z)

5 tháng 10 2020

Tớ cũng giải ra sinx=0 như câu nhưng mắc cái phần sau á

5 tháng 10 2020

Bằng 1 thì ez r cậu :<

a: sin x=3/2

mà -1<=sin x<=1

nên \(x\in\varnothing\)

b; \(sinx=\dfrac{\sqrt{2}}{2}\)

=>sinx=sin(pi/4)

=>x=pi/4+k2pi hoặc x=pi-pi/4+k2pi

=>x=pi/4+k2pi hoặc x=3/4pi+k2pi

c: sin7x=sin5x

=>7x=5x+k2pi hoặc 7x=pi-5x+k2pi

=>2x=k2pi hoặc 12x=pi+k2pi

=>x=kpi hoặc x=pi/12+kpi/6

d: =>5x=45 độ+k*360 độ hoặc 5x=180 độ -45 độ+k*360 độ

=>x=9 độ+k*72 độ hoặc 5x=135 độ+k*360 độ

=>x=9 độ+k*72 độ hoặc x=27 độ+k*72 độ

NV
15 tháng 8 2020

4.

ĐKXĐ: \(2cos^2x+sinx-1\ne0\)

\(\Leftrightarrow-2sin^2x+sinx+1\ne0\Rightarrow\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)

Khi đó pt tương đương:

\(\Leftrightarrow\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(loại\right)\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
15 tháng 8 2020

3.

\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)

\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)

NV
23 tháng 12 2020

\(\Leftrightarrow2sinx.cosx-2cosx+2sin^2x+sinx-3=0\)

\(\Leftrightarrow2cosx\left(sinx-1\right)+\left(sinx-1\right)\left(2sinx+3\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2cosx+2sinx+3\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{3}{2\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow...\)

23 tháng 12 2020

Em cảm ơn nhiều ạ!

 

15 tháng 8 2021

ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)

\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)

\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)

\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)

\(\Leftrightarrow2cos^22x-2cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)