Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)
\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha\right)+3sin^2\alpha-cos^2\alpha\)
\(=sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha+3sin^2\alpha-cos^2\alpha\)
\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)
\(=\left(sin^2\alpha\right)^2+\left(cos^2\right)^2-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\)
\(=1-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)
\(=1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha-cos^2\alpha\)
\(=1-3sin^2\alpha.\left(1-sin^2\alpha\right)+3sin^2\alpha-\left(1-sin^2\alpha\right)\)
\(=1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-\left(1-sin^2\alpha\right)\)
\(1-3sin^2\alpha-sin^2\alpha+3sin^2\alpha-1+sin^2\alpha\)
\(=0\)
\(A=sin^6a+cos^6a=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a.\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
Đặt \(x=sin^2a\) , \(y=cos^2a\) , thì ta có \(x^2+y^2=1\)
Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) , ta được :
\(sin^2a.cos^2a\le\frac{\left(sin^2a+cos^2a\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow A=1-3sin^2a.cos^2a\ge1-3.\frac{1}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(sin^2a=cos^2a\Leftrightarrow sina=cosa\Leftrightarrow a=45^o\)
Vậy........................................................................
=(sin a+cos a)(sin^2.a-sina.cosa+cos^2a)+(sina+cosa)sina.cosa-cos a
=(sin a+cos a)(1-sina.cosa+sina.cosa)-cosa
=sina+cosa-cosa
=sina