">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

\(sin^2x=\frac{1}{2}\) 

\(\frac{1-cos2x}{2}=\frac{1}{2}\) 

\(1-cos2x=1\) 

\(cos2x=0\)   

\(2x=\frac{\pi}{2}+k\pi\) 

\(x=\frac{\pi}{4}+\frac{k\pi}{2}\)

7 tháng 9 2020

tìm các nghiệm của x=\(\frac{\pi}{4}+\frac{\pi n}{2}\)bằng cách giải x

x=\(\frac{\pi}{4}+\frac{\pi n}{2}\), cho mọi số nguyên n

21 tháng 9 2018

Câu 1:

\(cos7x-\sqrt{3}sin7x=-2\\ \Leftrightarrow cos\left(7x+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow7x+\dfrac{\pi}{3}=-\pi+k2\pi\\ \Leftrightarrow x=-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\)

\(x\in[\dfrac{2\pi}{5};\dfrac{6\pi}{7}]\)

\(\Rightarrow\dfrac{2\pi}{5}\le x\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{2\pi}{5}\le-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{31}{15}\le k\le\dfrac{11}{3}\)

\(k\in Z\) nên \(k=3\)

Vậy \(x\) cần tìm là \(\dfrac{2\pi}{3}\)

21 tháng 9 2018

Câu 2:

\(2sin^2x-sinxcosx-cos^2x=m\\ \Leftrightarrow2\dfrac{1-cos2x}{2}-\dfrac{1}{2}s\text{in2}x-\dfrac{1+cos2x}{2}=m\\ \Leftrightarrow3cos2x+s\text{in2}x=1-2m\)

Điều kiện để phương trình có nghiệm là:

\(3^2+1^2\ge\left(1-2m\right)^2\\ \Leftrightarrow4m^2-4m-9\le0\\ \Leftrightarrow\dfrac{1-\sqrt{10}}{2}\le m\le\dfrac{1+\sqrt{10}}{2}\)

1 tháng 8 2018

1/ \(pt\Leftrightarrow\left(3cos^2x-sin^2x\right)\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)\left(\dfrac{1}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)=0\)

\(\Leftrightarrow\left(2cos2x+1\right)cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

2/ \(pt\Leftrightarrow\left(sinx-1\right)\left(sin^2x+sinx+6\right)=0\)

\(\Leftrightarrow sinx=1\)

3/ \(pt\Leftrightarrow\dfrac{1-cos2x}{2}-4sin2x+\dfrac{7}{2}\left(1+cos2x\right)=0\)

\(\Leftrightarrow3cos2x-4sin2x=-4\)

\(\Leftrightarrow5\left(\dfrac{3}{5}cos2x-\dfrac{4}{5}sin2x\right)=-4\)

\(\Leftrightarrow cos\left(2x+arccos\dfrac{3}{5}\right)=-\dfrac{4}{5}\)

4,5 giải tương tự câu 3

NV
7 tháng 11 2019

ĐKXĐ: ...

a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)

\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)

\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)

\(\Leftrightarrow cosx=2sin4x.cosx\)

\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)

\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)

\(\Leftrightarrow cos2x+2sin^22x=1\)

\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)

\(\Leftrightarrow-2cos^22x+cos2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
7 tháng 11 2019

1c/

\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)

\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)

\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)

\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)

\(\Leftrightarrow2sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)

Bài 2:

a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow4m\le4\Rightarrow m\le1\)

NV
24 tháng 10 2020

3.

Theo điều kiện của pt lượng giác bậc nhất:

\(m^2+\left(3m+1\right)^2\ge\left(1-2m\right)^2\)

\(\Leftrightarrow10m^2+6m+1\ge4m^2-4m+1\)

\(\Leftrightarrow3m^2+5m\ge0\Rightarrow\left[{}\begin{matrix}m\ge0\\m\le-\frac{5}{3}\end{matrix}\right.\)

4.

\(\Leftrightarrow1-sin^2x-\left(m^2-3\right)sinx+2m^2-3=0\)

\(\Leftrightarrow-sin^2x-m^2sinx+2m^2+3sinx-2=0\)

\(\Leftrightarrow\left(-sin^2x+3sinx-2\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2-sinx\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(2-sinx\right)\left(sinx-1+m^2\right)=0\)

\(\Leftrightarrow sinx=1-m^2\)

\(\Rightarrow-1\le1-m^2\le1\)

\(\Rightarrow m^2\le2\Rightarrow-\sqrt{2}\le m\le\sqrt{2}\)

NV
24 tháng 10 2020

1.

Bạn xem lại đề, \(sin^2x\left(\frac{x}{2}-\frac{\pi}{4}\right)\) là sao nhỉ?Có cả x trong lẫn ngoài ngoặc?

2.

ĐKXĐ: \(sinx\ne0\)

\(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

28 tháng 6 2018

giúp mk với

NV
19 tháng 10 2020

1.

\(4\left(1-cos^23x\right)+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}-4=0\)

\(\Leftrightarrow-4cos^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=-\frac{1}{2}\\cos3x=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{9}+\frac{k2\pi}{3}\\x=\pm\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

2.

\(\Leftrightarrow\frac{\sqrt{3}-1}{2\sqrt{2}}sinx-\frac{\sqrt{3}+1}{2\sqrt{2}}cosx=-\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=-cos\left(\frac{5\pi}{12}\right)\)

\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=sin\left(-\frac{\pi}{12}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5\pi}{12}=-\frac{\pi}{12}+k2\pi\\x-\frac{5\pi}{12}=\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
19 tháng 10 2020

3.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+8tanx+8\sqrt{3}-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k2\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow sin\left(x-120^0\right)=-cos\left(2x\right)=sin\left(2x-90^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-90^0=x-120^0+k360^0\\2x-90^0=300^0-x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow...\)

5.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x=\frac{1}{2}-\frac{1}{2}cos6x\)

\(\Leftrightarrow cos6x=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)