Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
** Sửa đề: Chỗ $\frac{1}{1}$ ở mẫu chuyển thành $\frac{1}{2}$
$\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+....+\frac{1}{97}.3+\frac{1}{99}.1$
$=50+(\frac{97}{3}+1)+(\frac{95}{5}+1)+....+(\frac{3}{97}+1)+(\frac{1}{99}+1)$
$=50+\frac{100}{3}+\frac{100}{5}+...+\frac{100}{97}+\frac{100}{99}$
$=100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})$
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})}=\frac{1}{100}\)
a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)
\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)
Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)
\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)
\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)
\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)
Thay B và C vào A
\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)
b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)
\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Thay E vào B
\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
Ghép các phân số ở số bị chia thành từng cặp mẫu chung giống mẫu của các phân số tương ứng ở số chia.Biến đổi số bị chia:cộng từng cặp các phân số cách đều hai đầu ta được
\(\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+............+\left(\frac{1}{49}+\frac{1}{51}\right)\)
=\(\frac{100}{1.99}+\frac{100}{3.97}+............+\frac{100}{49.51}\)
Biểu thức này gấp 50 lần số chia .
Vậy A=50
Ta xét riêng tử số:
\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+......+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1\times99}+\frac{100}{3\times97}+\frac{100}{5\times95}+......+\frac{100}{49\times51}\)
\(=100\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Bây giờ xét đến mẫu số:
\(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=\frac{2}{1\times99}+\frac{2}{3\times97}+\frac{2}{5\times95}+......+\frac{2}{49\times51}\)
\(=2\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Vậy giá trị của biểu thức là: \(\frac{100}{2}=50\)
2A = 2/3x5 + 2/5x7 + ... + 2/47x49 + 2/49x51
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/47 - 1/49 + 1/49 - 1/51
2A = 1/3 - 1/51
2A = 16/51
A = 16/51 : 2 =8/51
A = 1/2 . ( 1/3 -1/5 + 1/5-1/7 + ...+1/47 - 1/49 + 1/49 - 1/51)
A = 1/2 .(1/3 -1/51)
A=1/2 . 16/51
A= 8/51
Xét tử số:
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{10}{49.51}\)
\(=\frac{100}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}\)
Vậy
\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}\)
\(=\frac{100}{\frac{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}}}=100\)