K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

Nếu xét \(a\in R\) thì biểu thức này KHÔNG TỒN TẠI GTNN.

Nếu xét \(a>0\)

Đặt \(t=\frac{a^2+1}{a}\ge\frac{2\sqrt{a^2.1}}{a}=\frac{2a}{a}=2\text{ }\left(\text{Cô}-\text{si}\right)\)

\(S=\frac{1}{a}+\frac{5a}{2}=\frac{1}{a}+\frac{a}{4}+\frac{9a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{9.2}{4}=\frac{11}{2}\)

Dấu bằng xảy ra khi \(a=1\)

17 tháng 4 2016

bạn làm nhanh nhỉ

31 tháng 8 2017

Theo cauchy ta có \(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\ge2\sqrt{\frac{a}{a^2+1}.\frac{5\left(a^2+1\right)}{2a}}=2.\sqrt{\frac{5}{2}}=\sqrt{10}\)

1 tháng 9 2017

Làm như thế này không đúng đâu ,dấu = xảy ra khi nào

3 tháng 11 2017

Sorry ko bt làm !

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

mình mới học lớp 5

duyệt nha

4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
2 tháng 7 2017

ta có:

\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)

áp dụng bất đẳng thức Cauchy ta có:

\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}=2.\sqrt{\frac{1}{4}}=1\)

\(\frac{9\left(a^2+1\right)}{4a}\ge\frac{9.2a}{4a}=\frac{9}{2}\)

\(\Rightarrow S\ge\frac{9}{2}+1=\frac{11}{2}\)

Vậy \(Min_S=\frac{11}{2}\)khi a=1

2 tháng 7 2017

bạn ơi tại sao lại là \(\frac{9\left(a^2+1\right)}{4a}=\frac{9.2a}{4a}\)

14 tháng 3 2018

Đặt A là biểu thức cần CM 

ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh ) 

Áp dụng BĐT quen thuộc x² + y² ≥ 2xy 

a^4 + b² ≥ 2a²b (1) 
b^4 + c² ≥ 2b²c (2) 
c^4 + a² ≥ 2c²a (3) 
 

14 tháng 3 2018

tiếp đi bạn huy

23 tháng 5 2019

\(T=\frac{1}{a^2}+\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2+\frac{1}{b^2}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}\right)^2}{2}+\frac{\left(a+\frac{1}{b}+b+\frac{1}{a}\right)^2}{2}\)

\(\ge\frac{\left(\frac{4}{a+b}\right)^2}{2}+\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)

\(=8+\frac{25}{2}=\frac{41}{2}\)

\("="\Leftrightarrow a=b=\frac{1}{2}\)

23 tháng 5 2019

Nguyễn Thị Diễm Quỳnhtran nguyen bao quanHoàng Đình BảoYHoàng Tử Hànguyen thi thanh huyenNgô Thành ChungHUYNH NHAT TUONG VY?Amanda?Ribi Nkok NgokLuân ĐàoTrần Trung NguyênPhạm Hoàng Hải AnhVõ Thị Tuyết KhaNguyễn Phương TrâmNguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious Personsoyeon_Tiểubàng giảiVõ Đông Anh TuấnPhương AnTrần Việt Linh