
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a,Ta có A=|x-1|+|x+2019|=|1-x|+|x+2019|>=|1-x+x+2019|=2020
=>A>2020
Dấu''='' xảy ra <=>(1-x)(x+2019)>0
<=>(x-1)(x+2019)<0
<=>-2019<x<1
Vậy MIN(A)=2020<=>-2019<x<1
có gì sai bạn bỏ qua nhé>3


Ta có \(\left|\frac{5}{6}z-10\right|\ge0\) mà đề bài cho \(\left|\frac{5}{6}x-10\right|\le0\)
\(\Rightarrow\) \(\left|\frac{5}{6}x-10\right|=0\) \(\Leftrightarrow\frac{5}{6}x-10=0\) \(\Leftrightarrow\frac{5}{6}x=0+10\)\(\Leftrightarrow\frac{5}{6}x=10\) \(\Leftrightarrow x=10:\frac{5}{6}\)
\(\Leftrightarrow x=12\)

\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+x+x+x\right)+1+2+3+4=20\\\left(x+x+x+x\right)+1+2+3+4=-20\text{}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=20\\x+10=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=20-10\\x=-20-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-30\end{cases}}\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=20\)
\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left[x+x+x+x\right]+\left[1+2+3+4\right]=20\\\left[x+x+x+x\right]+\left[1+2+3+4\right]=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x+10=20\\4x+10=-20\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-30\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=5\\2x=-15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{15}{2}\end{cases}}\)
Vũ Bách Quang sai từ dòng thứ ba đến cuối . Xem kĩ lại nhé
\(\left|x-1\right|\le4\)
\(\Leftrightarrow-4\le x-1\le4\)
\(\Leftrightarrow-4+1\le x-1+1\le4+1\)
\(\Leftrightarrow-3\le x\le5\)
tiếp nhé
\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2;3;4;5\right\}\)