Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
*Xếp 12 khách vào 3 toa tàu (có thể có toa không có khách): Có 3 12 cách.
* Trừ đi các trường hợp có KHÔNG QUÁ 2 toa có khách: − C 3 2 .2 12
(Chọn ra hai toa có C 3 2 cách. Sau đó xếp tùy ý 12 khách vào 2 toa đã chọn ra này, tức là có thể có một trong hai toa không có khách).
Nhưng như vậy ta đã trừ đi các trường hợp chỉ có 1 toa có khách đến 2 lần nên phải cộng lại số này: + C 3 1 .1 12
* Vậy cách xếp thỏa mãn yêu cầu bài toán là 3 12 − C 3 2 .2 12 + C 3 1 .1 12 = 519156 cách.
Do đó chọn đáp án B.
Bài toán tổng quát: Có bao nhiêu cahcs xếp q hành khách vào n toa tàu khác nhau sao cho toa tàu nào cũng có khách? (hay chính là bài toán chia quà: Có bao nhiêu cách chia q món quà khác nhau cho n bạn sao cho bạn nào cũng có quà?)
Ở bài toán trên, ta có:
3 12 − C 3 2 .2 12 + C 3 1 .1 12 = C 3 0 3 − 0 12 − C 3 1 3 − 1 12 + C 3 2 3 − 2 12 − C 3 3 3 − 3 12
Lập luận tương tự như bài toán trên ta có số cách xếp (cách chia) là:
C n 0 n − 0 q − C n 1 n − 1 q + C n 2 n − 2 q − C n 3 n − 3 q + ... = ∑ k = 0 n − 1 k C n k n − k q
Bài toán này khác với bài toán chia kẹo Euler: Có bao nhiêu cách chia q chiếc kẹo giống nhau cho n em bé sao cho em nào cũng có kẹo?
Chọn A
Phương pháp:
Gọi giá tua là x (triệu đồng).
Lập hàm số tổng doanh thu theo x.
Xét hàm tìm GTLN của hàm số trên và kết luận.
Cách giải:
Gọi x (triệu đồng) là giá tua.
Số tiền được giảm đi so với ban đầu là 2-x.
Số người tham gia được tăng thêm nếu bán với giá x là:
Số người sẽ tham gia nếu bán giá x là: 150 + (400-200x) = 550 - 220x
Tổng doanh thu là: f(x) = x(550-220x)
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy f(x) đạt giá trị lớn nhất khi
Vậy công ty cần đặt gói tua 1375000 đồng thì tổng doanh thu sẽ cao nhất là 378125000 đồng.
Người đàn ông đã đưa 4 tờ 25 xu nên nhân viên quầy vé biết ông muốn mua 2 vé vì nếu ông muốn mua 1 vé thì chỉ cần đưa 2 tờ 25 xu thôi.