K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

pn lấy đề ở đâu vậy ?

5 tháng 8 2016

Ở lớp học thêm c ạ

21 tháng 7 2016

Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.

21 tháng 7 2016

a) A<B

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có:

\(-\frac{2}{3} = -0,\left( 6 \right);\,\,\,\,\,4,1;\,\,\, - \sqrt 2  =  - 1,414...;\,\,\,\,3,2;\\\pi  = 3,141...;\,\,\,\, - \frac{3}{4} =  - 0,75;\,\,\,\,\frac{7}{3} = 2,\left( 3 \right)\).

Do \( - 1,414... <  - 0,75 < -0,\left( 6 \right) < 2,\left( 3 \right) < 3,141... < 3,2 < 4,1\)

Nên \( - \sqrt 2  <  - \frac{3}{4} < -\frac{2}{3} < \frac{7}{3} < \pi  < 3,2 < 4,1.\)

19 tháng 9 2023

Ta có: 

\(-\dfrac{2}{3}\approx-0,67;-\sqrt{2}\approx-1,41;-\dfrac{3}{4}=-0,75;\dfrac{7}{3}\approx2,33;\pi\approx3,14\)

Từ đó, ta có thứ tự sắp xếp: 

\(-\sqrt{2};-\dfrac{3}{4};-\dfrac{2}{3};1;2;\dfrac{7}{3};3;\pi;4\)

4 tháng 11 2018

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\left| { - 3,2} \right| = 3,2;\,\,\,\,\,\left| {2,13} \right| = 2,13;\,\,\,\left| {\, - \sqrt 2 } \right| = \sqrt 2  = 1,41..;\,\,\,\,\left| { - \frac{3}{7}} \right| = \frac{3}{7} = 0,42...\)

Do \(0,42 < 1,41... < 2,13 < 3,2\) nên:

\(\left| { - \frac{3}{7}} \right| < \left| { - \sqrt 2 } \right| < \left| {2,13} \right| < \left| { - 3,2} \right|\).

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có:

\(6 = \sqrt {36} ; - 1,7 =  - \sqrt {2,89} \)

Vì 0 < 2,89 < 3 nên 0> \( - \sqrt {2,89}  >  - \sqrt 3 \) hay 0 > -1,7 > \( - \sqrt 3 \)

Vì 0 < 35 < 36 < 47  nên \(0 < \sqrt {35}  < \sqrt {36}  < \sqrt {47} \) hay 0 < \(\sqrt {35}  < 6 < \sqrt {47} \)

Vậy các số theo thứ tự tăng dần là: \( - \sqrt 3 ; - 1,7;0;\sqrt {35} ;6;\sqrt {47} \)

b) Ta có:

\(\sqrt {5\frac{1}{6}}  = \sqrt {5,1(6)} ; - \sqrt {2\frac{1}{3}}  =  - \sqrt {2,(3)} \); -1,5 = \( - \sqrt {2,25} \)

Vì 0 < 2,25 < 2,3 < 2,(3) nên 0> \( - \sqrt {2,25}  >  - \sqrt {2,3}  >  - \sqrt {2,(3)} \) hay 0 > -1,5 > \( - \sqrt {2,3}  >  - \sqrt {2\frac{1}{3}} \)

Vì 5,3 > 5,1(6) > 0 nên \(\sqrt {5,3}  > \sqrt {5,1(6)} \)> 0 hay \(\sqrt {5,3}  > \sqrt {5\frac{1}{6}}  > 0\)

Vậy các số theo thứ tự giảm dần là: \(\sqrt {5,3} ;\sqrt {5\frac{1}{6}} ;0\); -1,5; \( - \sqrt {2,3} ; - \sqrt {2\frac{1}{3}} \)

7 tháng 8 2015

Nguyễn Ngọc Quý sư cô là số pi=3,14

 

25 tháng 7 2016

346/105

16 tháng 7 2017

= 2/3+3/7+11/5

=23/21+11/5

=346/105

 Xin lỗi bn máy mình ko viết được căn