Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: -10/8<-1
-19/19=-1
-1<-2/10<0
0<5/12<1<17/15
=>17/15>1>5/12>-2/10>-19/19>-10/8
b: -1/3=-4/12; -5/12=-5/12; -3/4=-9/12; -1/4=-3/12; -7/12=-7/12
=>-3/4<-7/12<-5/12<-1/3<-1/4
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
x=2^100 suy ra x=16^25
y=3^75 suy ra y= 27^25
z=5^50 suy ra z= 25^25
Ta thấy: 16^25<25^25<27^25
Suy ra x<z<y
Sắp xếp: x,z,y
k mình nhaa!!! Mơn bạn nhìu
x=2^100 suy ra x=16^25
y=3^75 suy ra y= 27^25
z=5^50 suy ra z= 25^25
Ta thấy: 16^25<25^25<27^25
Suy ra x<z<y
Sắp xếp: x,z,y
Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy:
Cách 1: Ta có:
\(\begin{array}{l}5\frac{1}{4} = \frac{{5.4 + 1}}{4} = \frac{{21}}{4} = \frac{{42}}{8}\\ - 2 = \frac{{ - 16}}{8}\\3,125 = \frac{{3125}}{{1000}} = \frac{{25}}{8}\\ - \frac{3}{2} = \frac{{ - 12}}{8}\end{array}\)
Vì -16 < -12 < 25 < 42 nên \(\frac{{ - 16}}{8} < \frac{{ - 12}}{8} < \frac{{25}}{8} < \frac{{42}}{8}\) hay -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)
Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)
Cách 2: Ta có: \(5\frac{1}{4}\)= 5,25
\(\frac{{ - 3}}{2}\)= -1,5
Vì -2 < -1,5 < 0 < 3,125 < 5,25 nên -2 < \(\frac{{ - 3}}{2}\) < 3,125 < \(5\frac{1}{4}\)
Vậy các số hữu tỉ trên sắp xếp theo thứ tự từ bé đến lớn là: -2; \(\frac{{ - 3}}{2}\); 3,125; \(5\frac{1}{4}\)