Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thu gọn và sắp xếp các hạng tử của đa thức B( x )= x3 + 5x2 + x + x3 - 2 theo lũy thừa tăng của biến
a, \(P\left(x\right)=-x^4+3x^3-6x^2+2x+\dfrac{1}{2}\)
\(Q\left(x\right)=5x^5-x^3+x^2-7x-\dfrac{1}{4}\)
b, Ta có \(P\left(x\right)+Q\left(x\right)=5x^5-x^4+2x^3-5x^2-5x+\dfrac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=-x^4+4x^3-7x^2+9x+\dfrac{3}{4}-5x^5\)
Trước hết, ta rút gọn các đa thức:
- Q(x) = 4x3 – 2x + 5x2 - 2x3 + 1 - 2x3
Q(x) = (4x3- 2x3- 2x3) – 2x + 5x2 + 1
Q(x) = 0 – 2x + 5x2 + 1
Q(x) = – 2x + 5x2 + 1
- R(x) = - x2 + 2x4 + 2x - 3x4 – 10 + x4
R(x) = - x2 + (2x4- 3x4+ x4) + 2x – 10
R(x) = - x2 + 0 + 2x – 10
R(x) = - x2 + 2x – 10
Sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm dần của biến ta có:
Q(x) = 5x2 – 2x + 1
R(x) = - x2 + 2x – 10
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5
= – x6 + x4 – 4x3 + x2 – 5.
= – 5+ x2 – 4x3 + x4 – x6
Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1
= 2x5 – x4 + (x3 – 2x3) + x2 + x –1
= 2x5 – x4 – x3 + x2 + x –1.
= –1+ x + x2 – x3 – x4 + 2x5
Sau khi rút gọn, B(x) = 6x5 – 3x + 7x3 +
Sắp xếp các hạng tử của B(x) theo lũy thừa tăng dần của biến : 6x5 ; 7x3 ; – 3x ;
Ta được: B(x)= 6x5 + 7x3 – 3x +