Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
+>
Nhân 3 vào 2 vế ta được:
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=> A = \(\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)
+>
Nhân 4 vào 2 vế ta được:
4B = 4. [1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)]
4B = 1.2.3.4 + 2.3.4.4 + ... +(n-1)n(n+1).4
4B= 1.2.3.4 + 2.3.4.(5-1) +... + (n-1)n(n+1) [ (n+2) - (n-2)]
4B = ( n-1) .n(n+1) . (n+2)
B = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Mình làm hơi tắt mong bạn bỏ qua
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
cảm on Nguyen Chau Tuan Kietvề bài
* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1
Ngày ra đề : 29 / 12 / 2018
Ngày nộp : 15 / 1 / 2019
Ngày trao thưởng : 20/1/2019
-------------------------------------------------------------------------
*Giải thưởng :
Nhất : 10 SP
Nhì ( 2 giải ) : 8 SP
Ba ( 3 giải ) : 6 SP
Khuyến khích ( 5 giải ) : 4 SP------------------------------------
--------------------------------------------------------------------------------------------------
*Thể lệ thi:
+Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)
+Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.
--------------------------------------------------------------------------------
Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ
Nói nhiều rồi chúng ta vào cuộc thi thôi.
-------------------------------------------------------------------------------------------
Đề : ( cũng dễ thôi )
Câu 1 : Giải phương trình
√x2+4x+5=1
Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.
Câu 3 :
Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.
a) Chứng minh ΔBEA = ΔBEM.
b) Chứng minh EM ⊥ BC.
c) So sánh góc ABC và góc MEC
Câu 1 :
\(\sqrt{x^2+4x+5}=1\)
\(\left(\sqrt{x^2+4x+5}\right)^2=1^2\)
\(x^2+4x+5=1\)
\(x^2+4x=-4\)
\(x\left(x+4\right)=-4\)
Xét bảng :
x | 1 | -1 | 2 | -2 | 4 | -4 |
x+4 | -4 | 4 | -2 | 2 | -1 | 1 |
x1 | 1 | -1 | 2 | -2 | 4 | -4 |
x2 | -8 | 0 | -6 | -2 | -5 | -3 |
Xét thấy chỉ có x = -2 và x + 4 = 2 thì x1 = x2 = -2 => chọn
Các trường hợp còn lại loại vì nghiệm của x1 và x2 phải bằng nhau
Vậy x = -2
xét tam giác BAE và tam giác BME xcos
BA=BM (gt)
góc BAE =góc MEB (gt)
BE cạnh chung
VẬY tam giác BAE=tam giác BME (c_g_c)
b) ta có tam giác BAE=tam giác BME
=> góc BMA=góc BME=90 độ(đpcm)
:(( Phần thưởng ít vậy
Tên: Xuân Sáng
Lớp: 6 :v
Link: Góc học tập của Xuân Sáng | Học trực tuyến
Tên: Nguyễn Thị Thu Hương
Link: Nguyễn Thị Thu Hương
Thôi chết,bị lỗi front rồi.Mọi người vào đây thi nhé! Vòng 3
Đang trong thời gian thi học kì, chắc ko ai rảnh thi đâu bn