Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2^{91}\) và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\) nên \(2^{91}>5^{35}\)
b, \(222^{333}\) và \(333^{222}\)
Ta có :
\(222^{333}=\left(2.111\right)^{333}=2^{333}.111^{333}=\left(2^3\right)^{111}.111^{333}=8^{111}.111^{333}\)
\(333^{222}=\left(3.111\right)^{222}=3^{222}.111^{222}=\left(3^2\right)^{111}.111^{222}=9^{111}.111^{222}\)
Vì \(8^{111}< 9^{111}\) nên \(222^{333}< 333^{222}\)
Bài khó đến lớp 8 như mình còn ko bít làm thì ai làm hộ bạn đc
\(\left\{{}\begin{matrix}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{b}{c}=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow P=1+1+1=3\)