K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

Ta có một số hạng của S đều chia hết cho 5 nên S chia hết cho 5

Dễ thấy S không chia hết cho 25 ( Do 5 không chia hết cho 25) 

Vậy S không là số chính phương

22 tháng 7 2015

A là số chính phương:

A=5+52+53+...+5100

=5(1+5)+53(1+5)+55(1+5)+...+599(1+6)

=5.6+53.6+55.6+...+599.6

=6.(5+53+55+57+...+599)

Vì 6 là số chính phương nên A là số chính phương

27 tháng 11 2016

S=-5+(-5)^2+(-5)^3+...+(-5)^100

-5S=(-5)^2+(-5)^3+...+(-5)^100+(-5)^101

-5S-S=-6S=(-5)^101+5

[(-5)^101+5]÷6

27 tháng 11 2016

theo bài ra ta có:

S = (-5) + (-5)2 + (-5)3 +...+ (-5)100

(-5).S = (-5)2 + (-5)3+ (-5)4 +...+ (-5)101

(-5)S - S = [ (-5)2 + (-5)3 + (-54) +...+ (-5)101] - [ (-5) + (-5)2 +...+(-5)100]

-6S = (-5)101+5

S = \(\frac{5^{101}-5}{6}\)

vậy S = \(\frac{5^{101}-5}{6}\)

17 tháng 10 2015

S = 1 + 3 + 32 + ... + 3100

3S = 3 + 32 + ... + 3101

3S - S = 3101 - 1

2S = 3101 - 1

S = \(\frac{3^{101}-1}{2}\)


B = 1 + 5 + 52 + ... + 549

5B = 5 + 5+ ... + 550

5B - B = 550 - 1

4B = 550 - 1

B = \(\frac{5^{50}-1}{4}\)

17 tháng 10 2015

trong câu hỏi tương tự nha bạn

16 tháng 7 2015

S=(1+3)+(3^2+3^3)+...+(3^99+3^100)

 =  4+3^2.(1+3)+...+3^99.(1+3)

= 4 + 3^2.4+..+3^99.4

= 4.(1+3^2+...+3^99) chia hết cho 4

S=(1+3+3^2)+...+(3^98+3^99+3^100)

 =  13+ ...+3^98.(1+3+3^2)

 = 13+...+3^98.13

 = 13.(1+...+3^98) chia hết cho 13

20 tháng 12 2017

Đúng rồi đó bn

20 tháng 12 2017

ta thấy \(2^{500}=\left(2^5\right)^{^{100}}=64^{100}\)

và \(5^{200}=\left(5^2\right)^{^{100}}=25^{100}\)

Vì \(64^{100}>25^{100}\)

\(\Rightarrow2^{500}>5^{200}\)

14 tháng 8 2017

a) \(S=5+5^2+5^3+...+5^{96}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)

\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{91}.\left(1+5^2+5^3+5^4+5^5\right)\)

\(S=5.3906+...+5^{91}.3906\)

\(S=3906.\left(5+...+5^{96}\right)\)

\(S=3.126.\left(5+...+5^{91}\right)\) chia hết cho \(6.\)

b) Do \(S\) là tổng các lũy thừa có cơ số là \(5\).

Cho nên mỗi lũy thừa đều tận cùng là \(5\).

\(S\) có tất cả \(96\) số

\(\Rightarrow\) Chữ số tận cùng của \(S\)\(0\).

14 tháng 8 2017

\(S=5+5^2+5^3+..+5^{96}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)\(S=1\left(5+5^2+5^3+5^4+5^6\right)5^6\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+5^{90}+\left(5+5^2+5^3+5^4+5^5+5^6\right)\)\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)\left(1+5^6+...+5^{90}\right)\)\(S=19530\left(1+5^6+...+5^{90}\right)\)

\(S=155.126.\left(1+5^6+...+5^{90}\right)\)

\(S⋮126\rightarrowđpcm\)

\(S=5+5^2+5^3+...+5^{96}\)

\(S=\overline{...5}+\overline{...5}+\overline{...5}+\overline{...5}+...+\overline{...5}+\overline{...5}\)\(S=\left(\overline{...5}+\overline{...5}\right)+\left(\overline{...5}+\overline{...5}\right)+...+\left(\overline{...5}+\overline{...5}\right)\)\(S=\overline{...0}+\overline{...0}+\overline{...0}\)

\(S=\overline{...0}\)

26 tháng 8 2019

Bài 1:

a ) Ta có :  A là tổng các số hạng chia hết cho 3 => A \(⋮\)3                            

                  A có 3 không chia hết cho 9 => A không chia hết cho 9

=>  A \(⋮\)3 nhưng không chia hết cho 9

=> A không phải là số chính phương

Bài 2:

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2

           = 4k^2+4k+1+4q^2+4q+1

           = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko là số  chính phương

=> ĐPCM