K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2023

\(S=2+2^2+2^3+...+2^{60}\)

\(2S=2\cdot\left(2+2^2+2^3+...+2^{60}\right)\)

\(2S=2^2+2^3+2^4+...+2^{61}\)

\(2S-S=\left(2^2+2^3+2^4+...+2^{61}\right)-\left(2+2^2+2^3+...+2^{60}\right)\)

\(S=2^{61}-2\)

\(S=2\left(2^{60}-1\right)\)

Mà: \(2\cdot\left(2^{60}-1\right)\) không phải là số chính phương

\(\Rightarrow S\) không phải là số chính phương 

26 tháng 9 2023

Toán lớp 3 

26 tháng 9 2023

\(S=2^1+2^2+2^3+...+2^{60}\)

\(2\cdot S=2^2+2^3+2^4+...+2^{61}\)

\(S=2^{61}-2\)

\(\Rightarrow S⋮2\)

Nếu S chia hết cho 2 thì \(S⋮2^2\) (nếu số chính phương chia hết cho số đó thì số chính phương cũng chia hết cho bình phương của số đó)

Ta có:

\(2^{61}=2^2\cdot2^{59}=4\cdot2^{59}⋮4\)

Mà \(2⋮4̸\) nên \(S=2^{61}-2\)\(⋮̸\)\(4\)

Vậy S không phải là số chính phương.

 

4 tháng 1 2019

a,   \(S=2.1+2.3+2.3^2+...+2.3^{2004}\)

          \(=2.\left(1+3+3^2+...+3^{2004}\right)\)

Đặt   \(A=1+3+3^2+...+3^{2004}\)

\(\Rightarrow\) \(3A=3+3^2+3^3+...+3^{2005}\)

\(\Rightarrow\) \(2A=3^{2005}-1\)

\(\Rightarrow\) \(A=\frac{3^{2005}-1}{2}\)

\(\Rightarrow\) \(S=2.\frac{3^{2005}-1}{2}=3^{2005}-1\)

b, Ta có : \(3^{2005}=3^{4.501+1}=\left(3^4\right)^{501}.3\)

Mà  \(\left(3^4\right)^{501}\) có chữ số tận cùng là 1

\(\Rightarrow\) \(\left(3^4\right)^{501}.3\) có chữ số tận cùng là 3

\(\Rightarrow\) \(3^{2005}\) có chữ số tận cùng là 3

\(\Rightarrow\) S có chữ số tận cùng là 2

\(\Rightarrow\) S không phải là số chính phương

Study well ! >_<