Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)
d.
\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)
e.
\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
2.a.
ĐKXĐ: ...
\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
b.
ĐKXĐ: \(x\ne k\pi\)
\(1-sin2x=2sin^2x\)
\(\Leftrightarrow1-2sin^2x-sin2x=0\)
\(\Leftrightarrow cos2x-sin2x=0\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow...\)
a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)
b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)
c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)
d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)
e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)
f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)
g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)
h)
\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)
k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
\(\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{4x^2+3}}{2x-1}=\lim\limits_{x\rightarrow-\infty}\frac{x\sqrt{4+\frac{3}{x^2}}}{2-\frac{1}{x}}=-\infty\)
\(lim\frac{\sqrt{n}}{\sqrt{n+4}+\sqrt{n+3}}=lim\frac{1}{\sqrt{1+\frac{4}{n}}+\sqrt{1+\frac{3}{n}}}=\frac{1}{2}\)
\(lim\left(\frac{\left(n-2\right)^2-\left(3n^2+n-1\right)}{n-2+\sqrt{3n^2+n-1}}\right)=lim\frac{-2n^2-5n+5}{n-2+\sqrt{3n^2+n-1}}=lim\frac{-2n+5+\frac{5}{n}}{1-\frac{2}{n}+\sqrt{3+\frac{1}{n}-\frac{1}{n^2}}}=-\infty\)
\(\lim\limits_{x\rightarrow0}\frac{\left(x^3-2x+1\right)^{\frac{1}{3}}-1}{x^2+2x}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(3x-2\right)\left(x^3-2x+1\right)^{-\frac{2}{3}}}{2x+2}=-\frac{1}{3}\)
Câu 1.
Vì \(\sqrt{2},\left(\sqrt{2}\right)^2,...,\left(\sqrt{2}\right)^n\) lập thành cấp số nhân có \(u_1=\sqrt{2}=q\) nên
\({u_n} = \sqrt 2 .\dfrac{{1 - {{\left( {\sqrt 2 } \right)}^n}}}{{1 - \sqrt 2 }} = \left( {2 - \sqrt 2 } \right)\left[ {{{\left( {\sqrt 2 } \right)}^n} - 1} \right] \to \lim {u_n} = + \infty \) vì \(\left\{{}\begin{matrix}a=2-\sqrt{2}>0\\q=\sqrt{2}>1\end{matrix}\right.\)
Câu 3.
Ta có biến đổi:
\(\lim \left( {\dfrac{{{n^2} - n}}{{1 - 2{n^2}}} + \dfrac{{2\sin {n^2}}}{{\sqrt n }}} \right) = \lim \dfrac{{{n^2} - n}}{{1 - 2{n^2}}} = \dfrac{1}{2}\)
a/ \(y'=42\left(2x+3\right)^{20}\left(x-4\right)^{23}+23\left(x-4\right)^{22}\left(2x+3\right)^{21}\)
b/ \(y=\frac{1}{x\sqrt{x}}=\frac{1}{\sqrt{x^3}}=x^{-\frac{3}{2}}\Rightarrow y'=-\frac{3}{2}x^{-\frac{5}{2}}=-\frac{3}{2x^2\sqrt{x}}\)
c/ \(y'=\frac{\left(x+\frac{1}{x}\right)'}{2\sqrt{\frac{x^2+1}{x}}}=\frac{1-\frac{1}{x^2}}{2\sqrt{\frac{x^2+1}{x}}}=\frac{\left(x^2-1\right)\sqrt{x}}{2x^2\sqrt{x^2+1}}\)
d/ \(y=x^2+x^{\frac{3}{2}}+1\Rightarrow y'=2x+\frac{3}{2}x^{\frac{1}{2}}=2x+\frac{3}{2}\sqrt{x}\)
e/ \(y'=\frac{\sqrt{1-x}+\frac{1+x}{2\sqrt{1-x}}}{1-x}=\frac{3-x}{2\left(1-x\right)\sqrt{1-x}}\)
f/ \(y'=\frac{\sqrt{a^2-x^2}+\frac{x^2}{\sqrt{a^2-x^2}}}{a^2-x^2}=\frac{a^2}{a^2-x^2}\)