Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)
Bài 1:
a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)
=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(6S=-5^{100}+1\)
=>\(S=\dfrac{-5^{100}+1}{6}\)
b: S=1-5+52-53+...+598-599 là số nguyên
=>\(\dfrac{-5^{100}+1}{6}\in Z\)
=>\(-5^{100}+1⋮6\)
=>\(5^{100}-1⋮6\)
=>\(5^{100}\) chia 6 dư 1
(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha
Ta có S = 1 + 3 + 32 + 33 + ... + 357
3S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 356 + 357 )
= 1( 1 + 3 ) + 32( 1 + 3 ) + ... + 356( 1 + 3 )
= 1 . 4 + 32 . 4 + ... + 356 . 4
= 4( 1 + 32 + ... + 356 ) ⋮ 4
Vậy A ⋮ 4
Lại có S = 1 + 3 + 32 + 33 + ... + 357
S - 1 = 3 + 32 + 33 + ... + 357
= ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 355 + 356 + 357 )
= 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 355( 1 + 3 + 32 )
= 3 . 13 + 34 . 13 + ... + 355 . 13
= 13( 3 + 34 + ... + 355 ) ⋮ 13
Vậy ( S - 1 ) ⋮ 13 ⇒ S không chia hết cho 13
Ta có S = 1 + 3 + 32 + 33 + ... + 357
3S = 3 + 32 + 33 + 34 + ... + 358
3S - S = ( 3 + 32 + 33 + 34 + ... + 356 ) - ( 1 + 3 + 32 + 33 + ... + 357 )
2S = 358 - 1 = 356 . 9 - 1 = ( 34 )14 . 9 - 1 = 8114 . 9 - 1 = ( ...9 ) - 1 = ( ...8 )
S = ( ...8 ) : 2 = ( ...4 )
Vậy chữ số tận cùng của S là 4
S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³
= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)
= 6 + 5².6 + ... + 5²⁰²².6
= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6
Vậy S ⋮ 6
--------
Số số hạng của S:
2023 - 0 + 1 = 2024 (số)
2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng
Ta có:
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)
= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31
= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)
Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31
6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6
Vậy S chia 31 dư 6
------------
Sửa đề:
Tìm số tự nhiên n để 4S - 25² = -1
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4S = 5S - S
= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 1
⇒ 4S - 25²ⁿ = -1
⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1
⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1
⇒ 5⁴ⁿ = 5²⁰²⁴
⇒ 4n = 2024
⇒ n = 2024 : 4
⇒ n = 506
\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)
\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)
=> Dư : 0
\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)
Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)
Bạn xem lại đề nhé