K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

a, \(S=1+3+3^2+...+3^{2019}\)

\(3S=3+3^2+3^3+...+3^{2020}\)

\(3S-S=\left(3+3^2+3^3+...+3^{2020}\right)-\left(1+3+3^2+...+3^{2019}\right)\)

\(2S=3^{2020}-1\)

\(S=\frac{3^{2020}-1}{2}\)

b, \(S=1+3+3^2+3^3+...+3^{2019}\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\)

\(S=4+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(S=4\cdot1+3^2\cdot4+...+3^{2018}\cdot4\)

\(S=4\left(1+3^2+...+3^{2018}\right)⋮4\)

AH
Akai Haruma
Giáo viên
3 tháng 2

Lời giải:

$S=3^2+3^4+3^6+...+3^{998}+3^{1000}$

$3^2S=3^4+3^6+3^8+...+3^{1000}+3^{1002}$

$\Rightarrow 3^2S-S=3^{1002}-3^2$
$\Rightarrow 8S=3^{1002}-9$

$\Rightarrow S=\frac{3^{1002}-9}{8}$

b.

$S=3^2+3^4+(3^6+3^8+3^{10})+(3^{12}+3^{14}+3^{16})+...+(3^{996}+3^{998}+3^{1000})$

$=90+3^6(1+3^2+3^4)+3^{12}(1+3^2+3^4)+...+3^{996}(1+3^2+3^4)$

$=90+(1+3^2+3^4)(3^6+3^{12}+...+3^{996})$

$=90+91(3^6+3^{12}+...+3^{996})$

$=6+ 12.7+7.13(3^6+3^{12}+...+3^{996})$ chia $7$ dư $6$

a: Sửa đề: S=5+5^2+...+5^2006

5S=5^2+5^3+...+5^2007

=>4S=5^2007-5

=>S=(5^2007-5)/4

b: S=5+5^4+5^2+5^5+...+5^2003+5^2006

=5(1+5^3)+5^2(1+5^3)+...+5^2003(1+5^3)

=126(5+5^2+...+5^2003) chia hết cho 126

22 tháng 10 2015

Ta có:

\(S=3+3^2+3^3+...+3^{2007}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{2005}+3^{2006}+3^{2007}\right)\)

\(=1.\left(3+3^2+3^3\right)+...+3^{2004}.\left(3+3^2+3^3\right)\)

\(=\left(1+...+3^{2004}\right).\left(3+3^2+3^3\right)\)

\(=\left(1+...+3^{2004}\right).39=\left(1+...+3^{2004}\right).3.13\) chia hết chp 13

22 tháng 10 2015

a) S= 3+3^2+....+3^2007  
      = ( 3 + 3^2 +3^3)+....+(3^2005+3^2006+2^2007)
      = 3(1+3+9)+......+3^2005(1+3+9)
     = 3. 13 +......+2^2005.13
     =13(3+...+2^2005) chia hết cho 13 
=> ĐPCM
b) S= 3+3^2+....+3^2007
      = 3 + (3^2+3^3+3^4+3^5)+.....+(3^2004+3^2005+3^2006+3^2007)
      = 3 + 3^2( 1+3+9+27)+.....+3^2004(1+3+9+27)
      = 3+ 3^2.40 +....+3^2004.40 
     = 3+ 40(3^2+...+3^2004) chia cho 40 dư 3
MÌnh nghĩ câu c, k đến nỗi nào , cô lên , 2S + 3 thì cứ làm theo vd sau 
A= 2+2^2+...+2^11
2A = 2^2+...+2^12
rồi làm hơ ,

21 tháng 2 2020

Câu 1 :

a) Ta có : S=5+52+53+...+52006

5S=52+53+54+...+52007

\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)

\(\Rightarrow\)4S=52007-5

\(\Rightarrow S=\frac{5^{2007}-5}{4}\)

b) Ta có : S=5+52+53+...+52006

=(5+53)+(52+54)+...+(52004+52006)

=5(1+52)+52(1+52)+...+52004(1+52)

=5.26+52.26+...+52004.26\(⋮\)26

Vậy S\(⋮\)26

21 tháng 2 2020

Câu 2 :

Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.

Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6

\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6

\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6

\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)

Ta có : 3=3

            4=22

            5=5

            6=2.3

\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60

\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}

\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}

Mà theo đề bài, a nhỏ nhất và chia hết cho 11

\(\Rightarrow\)a=418

Vậy số cần tìm là 418