K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)

=>2S=1-1/3^100

=>S=1/2-1/2*3^100<1/2

18 tháng 5 2016

nhận xét :

\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.............

\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

vậy

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)

18 tháng 5 2016

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)

=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)

=>S<3/4(đpcm)

12 tháng 4 2022

\(3s=3-3^2+3^3-3^4+...+3^{100}\)

\(4s=\left(3-3^2+3^3-3^4+...+3^{101}\right)+\left(1-3+3^2-3^3+...+3^{100}\right)\)

\(4s=1\)

\(s=\dfrac{1}{4}>\dfrac{1}{5}\)

5 tháng 12 2016

\(S=1+3+3^1+3^2+3^3+.....+3^{20}\)

\(3S=3.\left(1+3+3^1+3^2+3^3+.....+3^{20}\right)\)

\(3S=3.1+3.3^1+3.3^2+3.3^3+.....+3.3^{20}\)

\(3S=3+3^2+3^3+3^4+...+3^{21}\)

\(2S=3S-S\)

\(2S=\left(3+3^2+3^3+3^4+.....+3^{21}\right)-\left(1+3^1+3^2+3^3+.....+3^{20}\right)\)

\(2S=3^{21}-1\)

\(\Rightarrow S=\frac{3^{21}-1}{2}\)

\(\frac{1}{2}.3^{21}=3^{21}\div2\)

\(\frac{3^{21}-1}{2}< 3^{21}\div2\)nên S < \(\frac{1}{2}.3^{21}\)

26 tháng 3 2018

S=1/2+1/3+....+1/63>1/30+1/30+1/30+...+1/30=1/30 x 62=31/15>2

vì có 62 số hạng nên mk nhân với 62 nha

2 tháng 8 2015

S = 2/2  + 2/6  + 2/12 + 2/20 + ... + 2/90

S = 2/1.2 + 2/2.3 + 2/3.4 + .. + 2/9.10 

=> S = 2( 1/1.2 + 1/2.3 + ... + 1/9.10)

=> S = 2 ( 1/1 - 1/2 + 1/2  - 1/3 + .. + 1/9 - 1/10 )

=> S = 2 ( 1/1 - 1/10 ) 

Vì 1/1 - 1/10 < 1 => 2 ( 1/1 - 1/0 ) < 2.1 = 2 

VẬy S < 2 

tick đúng nha