Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính S = 1\(\frac{201}{280}\)
Khi quy đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số chung này thì. \(\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},\frac{1}{7}\)sở trở thành các phân số mà tử số là số chẵn, chỉ có \(\frac{1}{8}\)là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ và mẫu số là số chẵn nên S không phải là số tự nhiên.
Chứng minh \(\frac{5}{4}\)< S < 2
Thật vậy: \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)> 6 x \(\frac{1}{8}\)= \(\frac{3}{4}\)
Nên S > \(\frac{3}{4}\)\(+\frac{1}{2}\)= \(\frac{5}{4}\)
Mặt khác: \(\frac{1}{4}\)\(+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\)< 4 x \(\frac{1}{4}\)= 1
Nên S < 1 + \(\frac{1}{2}+\frac{1}{3}+\frac{1}{8}\)= 1 + \(\frac{1}{2}\)+ \(\frac{11}{24}\)< 2
Vì \(\frac{5}{4}\)< S < 2 nên S không phải là số tự nhiên
1)
a) \(x+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=5\)
\(x+\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}=5\)
\(x+\frac{127}{128}=5\)
\(x=5-\frac{127}{128}=\frac{513}{128}\)
b) \(x+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}=3\)
\(x+\frac{729}{2187}+\frac{243}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}=3\)
\(x+\frac{2186}{2187}=3\)
\(x=3-\frac{2186}{2187}=\frac{4375}{2187}\)
2)
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
b) \(5\frac{1}{2}+3\frac{5}{6}+\frac{2}{3}\)
\(=\left(5+3\right)+\left(\frac{1}{2}+\frac{2}{3}+\frac{5}{6}\right)\)
\(=8+\left(\frac{3}{6}+\frac{4}{6}+\frac{5}{6}\right)\)
\(=8+2=10\)
c) \(7\frac{7}{8}+1\frac{4}{6}+3\frac{3}{5}\)
\(=\left(7+1+3\right)+\left(\frac{7}{8}+\frac{2}{3}+\frac{3}{5}\right)\)
\(=11+\left(\frac{105}{120}+\frac{80}{120}+\frac{72}{120}\right)\)
\(=11+\frac{257}{120}=\frac{1577}{120}\)
3) Gọi số đó là x. Theo đề ta có :
\(\frac{16-x}{21+x}=\frac{5}{7}\)
\(7\left(16-x\right)=5\left(21+x\right)\)
\(112-7x=105+5x\)
\(112-105=7x-5x\)
\(7=2x\)
\(x=\frac{7}{2}=3,5\) ( vô lí )
Vậy không có số tự nhiên để thõa mãn điều kiện trên.
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
A= 1/2.2 + 1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9
Vì 1/2.2 > 1/2.3; 1/3.3 > 1/3.4 ; 1/5.5 > 1/5.6;...... nên
1/2.2 +1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9 > 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
Ta có: 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
= 1/2-1/3 + 1/3 -1/4 + 1/4-1/5+...+1/9-1/10
= 1/2- 1/10
= 2/5
Vì A < 2/5 mà 2/5 <7/8 nên 2/5 < A < 7/8
Vậy....
\(8\frac{7}{10}+2\frac{3}{4}=\frac{87}{10}+\frac{11}{4}=\frac{174}{20}+\frac{55}{20}=\frac{229}{20}\)
Bạn chỉ cần đưa về phân số xong tính bình thường. Muốn đổi từ hỗn số sang phân số, ta chỉ cần lấy phần nguyên nhân cho mẫu rồi cộng với tử là xong. Chứ bạn cứ hỏi mấy bài dễ như thế này thì k giỏi đc đâu!!!
Không vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1\)nhưng \(\frac{1}{4}+\frac{1}{8}+\frac{1}{7}=\frac{116}{224}\)mà 1 + \(\frac{116}{224}=1\frac{116}{224}\)không phải là số tự nhiên !!! Làm theo cách khác \(\frac{116}{224}\)không phải là số tự nhiên nên S không phải là số tự nhiên
Kết luận : S không phải là số tự nhiên
bạn đã giải theo 3 hướng sau đây : Hướng 1 : Tính S = 1 201/280 Hướng 2 : Khi qui đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số chung này thì 1/2 ; 1/3 ; 1/4 ; 1/5 ; 1/6 ; 1/7 sẽ trở thành các phân số mà tử số là số chẵn, chỉ có 1/8 là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ và mẫu số là số chẵn nên S không phải là số tự nhiên. Hướng 3 : Chứng minh 5/4 < S < 2 Thật vậy 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 > 6 x 1/8 = 3/4 nên S > 3/4 + 1/2 = 5/4 Mặt khác : 1/4 + 1/5 + 1/6 + 1/7 < 4 x 1/4 = 1 nên S < 1 + 1/2 + 1/3 + 1/8 = 1 + 1/2 + 11/24 <2 Vì 5/4 < S < 2 nên S không phải là số tự nhiên.