Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+......+2^{1000}\Rightarrow2A=2^2+2^3+2^4+......+2^{1001}\)
\(\Rightarrow2A-A=A=2^{1001}-2=\left(....2\right)-2=\left(.....0\right)\)
\(B=1+3^2+3^4+.........+3^{100}\Rightarrow9B=3^2+3^4+3^6+......+3^{102}\)
\(\Rightarrow9B-B=8B=3^{102}-1\Rightarrow B=\frac{3^{102}-1}{8}=\frac{\left(.....8\right)}{8}\)
=> B có tận cùng là 1 hoặc 6 nhưng Tổng B gồm 51 số hạng lẻ
=> B có tận cùng là 1
S=30+32+34+36+...+32020
32.S=32+34+36+...+32020+32021
9S-S=(32+34+36+...+32020+32021)-(30+32+34+36+...+32020)
8S=32021-30
\(S=\frac{3^{2021}-1}{8}\)
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\left(3^{101}-3\right):2\)
Ta có : \(2A+3=3^{101}\)
\(→n=101\)
~ Ủng hộ nhé ~
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
Ta có \(S=2+2^3+...+2^{99}\)
\(\Rightarrow2S=2^2+2^4+2^5+...+2^{100}\)
\(\Rightarrow2S=S-6+2^{100}\)
\(\Rightarrow S=2^{100}-6=2\left(2^{99}-3\right)\)
Ta thấy 24k có tận cùng là 6; 24k+1 có tận cùng là 2; 24k+2 có tận cùng là 4; 24k+3 có tận cùng là 8.
Mà 99 = 4.24 + 3 nên 299 có tận cùng là 8. Vậy thì 299 - 3 có tận cùng là 5 nên chia hết cho 5.
Tóm lại S chia hết cho 10 và 5.
b ) l - 18 l : 6 - l 15 l : 3
= 18 : 6 - 15 : 3
= 3 - 5
= - 2
\(S=3+3^2+3^3+...........+3^{100}\)
\(\Leftrightarrow\)\(3S=3^2+3^3+3^4+...........+3^{101}\)
\(\Leftrightarrow\)\(3S-S=3^{101}-3\)
\(\Leftrightarrow\)\(2S=3^{101}-3\)
\(\Leftrightarrow\)\(S=\frac{3^{101}-3}{2}\)
Vậy \(S=\frac{3^{101}-3}{2}\)
Yều cầu bài là gì vậy bạn ?