K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

S = 1 + 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰⁰

2S = 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰¹

S = 2S - S

= (2 + 2² + 2³ + ... + 2¹⁰¹) - (1 + 2 + 2² + ... + 2¹⁰⁰)

= 2¹⁰¹ - 1

------------

S = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101

3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)

= 1.2.3 - 1.2.3 + 2

3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102

= 100.101.102

S = 100 . 101 . 102 : 3

= 343400

------------

Q = 1² + 2² + 3² + ... + 100² + 101²

= 101.102.(2.101 + 1) : 6

= 348551

AH
Akai Haruma
Giáo viên
23 tháng 4 2018

Lời giải:

Ta có:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy ta có đpcm.

21 tháng 5 2021

Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)

Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)

=> A = 98B

21 tháng 5 2021

các bạn có  về sweet home

15 tháng 9 2017

câu a) (a^2+2a+a+2)(a+3)-(a^2+a)(a+2)= (3a+3)(a+2)

suy ra: a^3+3x^2+2a^2+6a+a^2+3a+2a+6-a^3-2x^2-a^2-2a= 3a^2+6a+3a+6

3a^2+9a+6=3a^2+9a+6

câu b) 

17 tháng 9 2017

^ là gì vậy bạn

29 tháng 2 2016

Phần chứng tỏ quy đồng lên rồi tính là ra

Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra

Kết quả là 49/50

19 tháng 4 2016

49/50

30 tháng 10 2016

\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)

\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)

\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(S=2\times\left(1-\frac{1}{100}\right)\)

\(S=2\times\frac{99}{100}\)

\(S=\frac{99}{50}\)

30 tháng 10 2016

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)

8 tháng 6 2015

\(\frac{1}{2}S=\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+.....+\frac{2}{2013.2014}\right)\)

          \(=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2013.2014}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2013}-\frac{1}{2014}\)

          \(=\frac{1}{2}-\frac{1}{2014}=\frac{503}{1007}\) 

=> S = 503\(\frac{503}{1007}:\frac{1}{2}=\frac{503}{1007}.2=\frac{1006}{1007}\) 

 

2 tháng 4 2016

S = 1/2+1/2.3+1/3.4 +... +1/9/10

S =1/2+1/2-1/3+1/3+1/4+...+1/9-1/10

S =1-10

S =9/10

Do 9/10<1

=>S<1

2 tháng 4 2016

S=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

  =1-(1/2-1/2)-(1/3-1/3)-(1/4-1/4)-...-(1/9-1/9)-1/10

  =1-1/10<1

Vậy S<1