Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=2+2^2+2^3+2^4+...+2^2009+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
=6+2^2.6+...+2^2008.6
=6(1+2^2+...+2^2008) chia hết cho 6
S = 2 + 22 + 23 + 24 + ..........+22009+ 22010
S = (2 + 22) + (23 + 24) + ..........+(22009+ 22010)
S = 6 . 1 + 6 . 22 +.............+6 . 22008
S = 6. (1 + 22 +.............+22008) chia hết cho 6 ( DPCM)
a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100
⇒ S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )
⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )
⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5
⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )
Vì 5 ⋮ 5 ⇒ S ⋮ 5 ( đpcm )
Câu b tương tự .
dễ ợt
s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)
s=2010.2011+2010^3.2011+.........+2010^2009.2011
s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011
\(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)
\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)
\(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011
Để chứng minh A chia hết cho 3 thì nhóm như sau :
A = (2 + 2^2) + (2^3 + 2^4) +......+ (2^2009 + 2^2010)
A = (2 + 2^2) + 2^2(2 + 2^2) +......+ 2^2008(2 + 2^2)
A = 6 + 2^2 . 6 + ......+ 2^2008 . 6
A = 6(1 + 2^2 +......+ 2^2008) chia hết cho 3
Để chứng minh A chia hết cho 7 thì ta nhóm như sau :
A = (2 + 2^2 + 2^3) + (2^4 + 2^5 + 2^6)+ ......+ (2^2008 + 2^2009 + 2^2010)
A = (2 + 2^2 + 2^3) + 2^3(2 + 2^2 + 2^3) + ....+ 2^2007(2 + 2^2 + 2^3)
A = 14 + 2^3 . 14 + .....+ 2^2007 . 14
A = 14(1 + 2^3 + .....+ 2^2007) chia hết cho 7
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
a, Chia hết cho 3 thì nhóm 2 số thành 1 cặp ; chia hết cho 7 thì nhóm 3 số thành 1 cặp
b, Đề phải là A = 2009.2011
Có :A = 2009.(2010+1) = 2009.2010+2009
= 2009.2010+2010-1 = 2010.(2009+1)-1 = 2010^2-1
Vì 2010^2-1 < 2010^2 = B => A < B
c, A = (3^3)^150 = 27^150
B = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => A > B
k mk nha
\(S=2+2^2+2^3+2^4+....+2^{2009}+2^{2010}\)
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(S=\left(2+2^2\right)+2^2\left(2+2^2\right)+....+2^{2008}\left(2+2^2\right)\)
\(S=6\left(1+2^2+...+2^{2008}\right)\)
\(\Rightarrow S⋮6\)