Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 2003^152>2003^20>199^20
Vậy 2003^152>199^20
b) Ta có: 3^39=(3^13)^3=1594323^3
11^21=(11^7)^3=19487171^3
Vì 1594323^3<19487171^3 nên 3^39<11^21
ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)
thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)
vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
\(A=1+3+3^2+....+3^{20}\)
\(\Leftrightarrow3A=3+3^2+...+3^{21}\)
\(\Leftrightarrow3A-A=\left(3+3^2+...+3^{21}\right)-\left(1+3+....+3^{20}\right)\)
\(\Leftrightarrow2A=3^{21}-1\)
\(\Leftrightarrow A=\dfrac{3^{21}-1}{2}\)
Mà \(B=3^{21}-1\)
\(\Leftrightarrow A< B\)
A=1+3+3^2+........+3^20
3A = 3 . ( 1 + 3 + \(3^2+...+3^{20}\))
3A = 3 + \(3^2+3^3+...+3^{21}\)
=> 3A - A = ( 3 + \(3^2+3^3+...+3^{21}\)) - ( \(1+3+3^2+3^{20}\) )
2A = \(3+3^2+3^3+...+3^{21}-1+3+3^2+...+3^{20}\)
=> A = \(\dfrac{3^{21}-1}{2}\)
Vì \(3^{21}-1\) > \(\dfrac{3^{21}-1}{2}\) nên => A < B
Vậy A < B
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
\(S=1+3+3^1+3^2+3^3+.....+3^{20}\)
\(3S=3.\left(1+3+3^1+3^2+3^3+.....+3^{20}\right)\)
\(3S=3.1+3.3^1+3.3^2+3.3^3+.....+3.3^{20}\)
\(3S=3+3^2+3^3+3^4+...+3^{21}\)
\(2S=3S-S\)
\(2S=\left(3+3^2+3^3+3^4+.....+3^{21}\right)-\left(1+3^1+3^2+3^3+.....+3^{20}\right)\)
\(2S=3^{21}-1\)
\(\Rightarrow S=\frac{3^{21}-1}{2}\)
\(\frac{1}{2}.3^{21}=3^{21}\div2\)
Vì \(\frac{3^{21}-1}{2}< 3^{21}\div2\)nên S < \(\frac{1}{2}.3^{21}\)