Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=-1.1.-1.1....-1.1=1 hoặc -1 (chưa biết đáp án lắm )
ủng hộ nhé !!!
^_^
\(A=1+7+7^2+7^3+...+7^{200}\)
\(\Rightarrow7A=7+7^2+7^3+...+7^{201}\)
\(\Rightarrow7A-A=\left(7+7^2+...+7^{201}\right)-\left(1+7+7^2+...+7^{200}\right)\)
\(\Rightarrow6A=7^{201}-1\)
\(\Rightarrow A=\frac{7^{201}-1}{6}\)
\(B=5^1+5^3+5^5+...+5^{101}\)
\(\Rightarrow5^2B=5^3+5^5+5^7+...+5^{103}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{103}\right)-\left(5+5^3+...+5^{101}\right)\)
\(\Rightarrow24B=5^{103}-5\)
\(\Rightarrow B=\frac{5^{103}-5}{24}\)
\(D=1+a+a^2+a^3+...+a^n\)
\(\Rightarrow aD=a+a^2+a^3+...+a^{n+1}\)
\(\Rightarrow aD-D=\left(a+a^2+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)\)
\(\Rightarrow\left(a-1\right)D=a^{n+1}-1\)
\(\Rightarrow D=\frac{a^{n+1}-1}{a-1}\)
a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
Vậy \(A=2^{101}-1\)
b) Đặt \(B=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=2B=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{101}-1}{2}\)
Vậy \(B=\frac{3^{101}-1}{2}\)
_Chúc bạn học tốt_