Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2^2 + 2^2 + ... + 2^2020
=> 2S = 2 . ( 1 + 2 + 2^2 + ... + 2^2020)
=> 2S = 2 + 2^2 + 2^3 + ....+ 2^2021
=> 2S - S = 2 + 2^2 + 2^3+ ...+ 2^2021 - 1 -2 -2^2 - ... - 2^2020
=> S = 2^2021 - 1
â,Đặt A là tên bthuc
A\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+2020\left(2021-1\right)\)
\(=\left(1.2+2.3+3.4+...+2020.2021\right)-\left(1+2+3+...+2020\right)\)
Đặt B = 1.2+2.3+...+2020.2021
\(3B=1.2.3+2.3.3+...+2020.2021.3\)
=\(1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+2020.2021.\left(2022-2019\right)\)
\(=\left(1.2.3+2.3.4+...+2020.2021.2022\right)-\left(0.1.2+1.2.3+...+2019.2020.2021\right)\)
\(=2020.2021.2022-0.1.2=2020.2021.2022\)
=>\(B=\frac{2020.2021.2022}{3}\)
=>\(A=\frac{2020.2021.2022}{3}-\frac{2020.2021}{2}=2020.2021\left(\frac{2022}{3}-\frac{1}{2}\right)=\frac{2020.2021.4041}{6}\)
b,Đặt tên bthuc là M
Ta có: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
=> \(1^3-1=0.1.2\)
\(2^3=1.2.3\)
.......
\(2020^3-2020=2019.2020.2021\)
=> \(M=0.1.2+1.2.3+2.3.4+...+2019.2020.2021+\left(1+2+...2020\right)\)
Đặt N=1.2.3+2.3.4+...+2019.2020.2021
\(4N=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+...+2019.2020.2021\left(2022-2018\right)\)
=\(\left(1.2.3.4+2.3.4.5+...+2019.2020.2021.2022\right)\)-\(\left(0.1.2.3+1.2.3.4+...+2018.2019.2020.2021\right)\)
\(=2019.2020.2021.2022-0.1.2.3=2019.2020.2021.2022\)
=>\(N=\frac{2019.2020.2021.2022}{4}\)
=>\(M=\frac{2019.2020.2021.2022}{4}+\frac{2020.2021}{2}=\frac{2019.2020.2021.2022+2.2020.2021}{4}\)
\(=\frac{2020.2021\left(2019.2022+2\right)}{4}=\frac{2020.2021.\left(2019.2022-2019+2022-1\right)}{4}\)
\(=\frac{2020.2021.\left(2019+1\right)\left(2022-1\right)}{4}=\frac{2020^2.2021^2}{4}=\left(1010.2021\right)^2\)
Ta có: \(A=1+2+2^2+...+2^{2020}\)
\(\Leftrightarrow2A=2+2^2+2^3+...+2^{2021}\)
Trừ vế 2A cho A ta được:
\(2A-A=\left(2+2^2+...+2^{2021}\right)-\left(1+2+...+2^{2020}\right)\)
\(\Rightarrow A=2^{2021}-1\)
Ta có: \(B=1+5+5^2+...+5^{2020}\)
\(\Leftrightarrow5B=5+5^2+5^3+...+5^{2021}\)
Trừ vế 5B cho B ta được:
\(5B-B=\left(5+5^2+...+5^{2021}\right)-\left(1+5+...+5^{2020}\right)\)
\(\Leftrightarrow4B=5^{2021}-1\)
\(\Rightarrow B=\frac{5^{2021}-1}{4}\)
S= (-2)-(-2)2+(-2)3-(-2)4+...+(-2)2019-(-2)2020
S= -2+ 22 +(-2)3 +24 +....+(-2)2019+22020
S= -2 +(-2)3 +.....+(-2)2019 + 22 +24+....+22020
Đặt A= -2+ (-2)3+....+(-2)2019
(-2)2A= -22[-2+ (-2)3+....+(-2)2019 ]
(-2)2A= (-2)2.(-2)+ (-2)3.(-2)2+......+(-2)2. (-2)2019
4A-A= [(-2)3 + (-2)5+.....+ (-2)2021 ] - [-2+ (-2)3+....+(-2)2019 ]
3A= (-2)2021 -(-2)
3A= (-2)2021 +2
A= [(-2)2021 +2 ]:3
Đặt B= 22 +24+....+22020
22B =22 ( 22 +24+....+22020)
22B= 22.22+ 24.22+...+22.22020
4B = 24 + 26+...+22022
4B-B= (24 + 26+...+22022)-( 22 +24+....+22020)
3B= 22022-22
B= ( 22022-22):3
=> S= ( 22022-22):3 + [(-2)2021 +2 ]:3
=> S= [22022-22+(-2)2021 +2] :3
Vậy....
Ko chắc nhaa :<
Bạn https://olm.vn/thanhvien/chi5asv làm gần đúng rồi.
Sửa lại dòng 2 và 3 từ trên xuống dưới:
S = -2 - 22 + (-2)3 - 24 +...+ (-2)2019 - 22020
S = -2 + (-2)3 +...+ (-2)2019 - (22 + 24 +...+ 22020)
Sửa lại dòng 4 và dòng 5 từ dưới lên trên:
=> S = [(-2)2021 + 2] ÷ 3 - (22022 - 22) ÷ 3
=> S = [(-2)2021 + 2 - 22022 + 22] ÷ 3
=> S = 22021 + 2
Vậy...
2S = 2 + 2^2 + 2^3 + .....+ 2^2020
2S-S= 1 - 2^2021