Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
Nên phương trình ban đầu tương đương với:
\(\frac{5}{6}=\frac{x}{6}\Leftrightarrow x=5\)
\(A=\dfrac{2}{1x3}+\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{21x23}\)
\(A=2x\left(\dfrac{1}{1x3}+\dfrac{1}{3x5}+\dfrac{1}{5x7}+...+\dfrac{1}{21x23}\right)\)
\(A=2x\dfrac{1}{2}x\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{21}-\dfrac{1}{23}\right)\)
\(A=1-\dfrac{1}{23}\)
\(A=\dfrac{22}{23}\)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(B=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+\dfrac{1}{5x6}+\dfrac{1}{6x7}+\dfrac{1}{7x8}+\dfrac{1}{8x9}+\dfrac{1}{9x10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=\dfrac{1}{2}-\dfrac{1}{10}\)
\(B=\dfrac{5}{10}-\dfrac{1}{10}\)
\(B=\dfrac{4}{10}\)
\(B=\dfrac{2}{5}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2450}+\frac{1}{2550}\)
\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{49x50}+\frac{1}{50x51}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
\(A=1-\frac{1}{51}=\frac{50}{51}\)
Ta có:
1 + 3 + 5 + 7 +...+2000001
Các số 1,2,3,5,7,.....,2000001 lập thành dãy số tự nhiên cách đều có khoảng cách là 2 đơn vị
Số số hạng của dãy là:
( 2000001 - 1 ) : 2 + 1 = 1000001 ( số hạng )
Tổng của dãy trên là :
( 2000001 + 1 ) x 1000001 :2 = 1000002000001
Đ/s: 1000002000001
A=1/1x2+1/2x3+1/3x4+1/4x5+...+1/49x50+1/50x51
A=2-1/1x2+3-2/2x3+4-3/3x4+...+50-49/49x50+51-50/50x51
A=1-1/2+1/2-1/3+1/3+1/4+...-1/49+1/49-1/50+1/50-1/51
A=1-1/51
A=51/51-1/51
A=50/51
tick nha
A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{50\cdot51}\)
A=\(\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{50}-\frac{1}{51}\right)\)
A=\(1-\frac{1}{51}\)
A=\(\frac{50}{51}\)
TL:
A=\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\).....+\(\dfrac{1}{2450}\)+\(\dfrac{1}{2550}\)
A=\(\dfrac{1}{1x2}\)+\(\dfrac{1}{2x3}\)+.....+\(\dfrac{1}{49x50}\)+\(\dfrac{1}{50x51}\)
A=1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-......+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\)+\(\dfrac{1}{50}\)-\(\dfrac{1}{51}\)
A=1-\(\dfrac{1}{51}\)=\(\dfrac{50}{51}\)