Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này làm như sau :
- Các số ở hàng chục nghìn là : 1 , 2 , 3 , 4 , 5
- xét 5 là số hàng chục nghìn thì ta được 1 số thỏa mãn
-xét 4 là số hàng chục nghìn thì ta có 5 số thỏa mãn
-xét 3 là số hàng chục nghìn thì ta có 25 số thỏa mãn
- xét 2 số hàng nghìn thì ta có 125 số thỏa mãn
- xét 1 là số hàng trăm thì ta được 625 số thỏa mãn
Ta lấy 1 + 5 + 25 + 125 + 625 = 781
Vậy ta có 781 số thỏa mãn yêu cầu của bài
Tích của 2 số tự nhiên liên tiếp chia hết cho 3 hoặc chia cho 3 dư 2
Vì 350 + 1 chia cho 3 dư 1 nên nó không thể là tích của hai số tự nhiên liên tiếp
Giả sử 4n3-5n-1 là SCP
Có 4n3-5n-1=(n+1)(4n2-4n-1)
Gọi (n+1; 4n2-4n-1)=d ( d thuộc N)
=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d
Mà 4n2-4n-1 =(n+1)(4n-8) + 7
=> 7 chia hết cho d
=> d = 7 hoặc 1
Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7
=> d=1
=> (n+1; 4n2-4n-1) =1
mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP
=> n+1 và 4n2-4n-1 đồng thời là SCP
=> 4n+4 và 4n2-4n-1 là SCP
=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP
mà 4n2+3 chia 4 dư 3
=> Vô lý
=> Giả sử sai
=> đccm
\(P=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-...+\dfrac{1}{\sqrt{2n}-\sqrt{2n+1}}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}-\dfrac{\sqrt{3}+\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}+...+\dfrac{\sqrt{2n}+\sqrt{2n+1}}{\left(\sqrt{2n}-\sqrt{2n+1}\right)\left(\sqrt{2n}+\sqrt{2n+1}\right)}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}}{2-3}-\dfrac{\sqrt{3}+\sqrt{4}}{3-4}+\dfrac{\sqrt{4}+\sqrt{5}}{4-5}-...+\dfrac{\sqrt{2n}+\sqrt{2n+1}}{2n-2n-1}\)
\(P=\dfrac{\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2n}+\sqrt{2n+1}}{-1}\)
\(P=\dfrac{\sqrt{2}+\sqrt{2n+1}}{-1}\)
\(P=-\left(\sqrt{2}+\sqrt{2n+1}\right)\)
Mà: \(\sqrt{2}\) là số vô tỉ nên: \(-\left(\sqrt{2}+\sqrt{2n+1}\right)\) là số vô tỉ với mọi n
\(\Rightarrow\) P là số vô tỉ không phải là số hữu tỉ
Các kí tự không được lặp lại và không tính thứ tự nên các kí tự đều khác nhau
- Kí tự thứ nhất có: 12 cách chọn
- Kí tự thứ hai có: 11 cách chọn
- Kí tự thứ 3 có: 10 cách chọn
......
- Kí tự thứ 8 có 5 cách chọn
Vậy có thể được: 12.11.10....6.5 = ... mã
số tự nhiên đó bạn aj