\(\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\)

b/ 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

\(\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\)

=\(\sqrt{\left(\sqrt{m-1}\right)^2+2\sqrt{m-1}+1}+\sqrt{\left(\sqrt{m-1}\right)^2-2\sqrt{m-1}+1}\)

=\(\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)

=\(\sqrt{m-1}+1+\sqrt{m-1}-1=2\sqrt{m-1}\)

29 tháng 6 2017

b)\(\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\)

\(\Leftrightarrow\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)

\(\Leftrightarrow\sqrt{m-1}+1+\sqrt{m-1}-1\Leftrightarrow2\sqrt{m-1}\)

29 tháng 6 2017

Câu 1 phá từng lớp ra :VD\(9+4\sqrt{2}\) =\((\sqrt{2}+2)^2\)

Câu 2:m+2\(\sqrt{m-1}\) =m-1+1+2\(\sqrt{m-1}\) =\((\sqrt{m-1} -1)^2 \)

12 tháng 10 2018

a) \(M=\sqrt{3-2\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{2+2.\sqrt{2}.2+4}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+2\right)^2}=\left|\sqrt{2}-1\right|+\sqrt{2}+2=\sqrt{2}-1+\sqrt{2}+2=2\sqrt{2}+1\)

b) \(N=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\left|\sqrt{3}-1\right|}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{2}.\sqrt{3}=\sqrt{6}\)

25 tháng 4 2017

Hướng dẫn trả lời:

M=√3−2√2−√6+4√2=√(√2)2−2√2.1+12−√(2)2+2√2+(√2)2=√(√2−1)3−√(2+√2)2=∣∣√2−1∣∣−∣∣2+√2∣∣=√2−1−2−√2=−3M=3−22−6+42=(2)2−22.1+12−(2)2+22+(2)2=(2−1)3−(2+2)2=|2−1|−|2+2|=2−1−2−2=−3

N=√2+√3+√2−√3⇒N2=(√2+√3+√2−√3)2=2+√3+2√(2+√3)(2−√3)+2−√3=4+2√4−3=6N=2+3+2−3⇒N2=(2+3+2−3)2=2+3+2(2+3)(2−3)+2−3=4+24−3=6

Vì N > 0 nên N2 = 6 ⇒ N = √6. Vậy



5 tháng 7 2018

\(\text{a) }\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{8+1+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\\ =\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\\ =\sqrt{13+30\sqrt{2}+30}\\ =\sqrt{43+30\sqrt{2}}\\ =\sqrt{25+18+30\sqrt{2}}\\ =\sqrt{\left(5+\sqrt{18}\right)^2}\\ =5+3\sqrt{2}\)

\(\text{b) }\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\\ =\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\\ =\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\\ =\sqrt{m-1}+1+\sqrt{m-1}-1\\ =2\sqrt{m-1}\)

26 tháng 8 2019

b, \(\frac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}\) + \(\frac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)

= \(\frac{\sqrt{3}\left(1+\sqrt{\sqrt{3}+1}\right)+\sqrt{3}\left(1-\sqrt{\sqrt{3}+1}\right)}{\left(1-\sqrt{\sqrt{3}+1}\right)\left(1+\sqrt{\sqrt{3}+1}\right)}\)

= \(\frac{\sqrt{3}+\sqrt{3\sqrt{3}+3}+\sqrt{3}-\sqrt{3\sqrt{3}+3}}{1^2-\left(\sqrt{\sqrt{3}+1}\right)^2}\)

= \(\frac{2\sqrt{3}}{1-\sqrt{3}-1}\)

= \(\frac{2\sqrt{3}}{-\sqrt{3}}\)

= -2

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
18 tháng 6 2017

2.

A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)

\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}-1-\sqrt{3}-1\)

\(=-2\)

B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)

\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)

\(=\sqrt{5-2\sqrt{2}-2}\)

\(=\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)

\(=\sqrt{2}-1\)

8 tháng 8 2018

Bài 1:

a, (Xin được sửa đề bài) \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1}-\sqrt{x-3-4\sqrt{x-3}+4}\)

\(=\sqrt{\left(\sqrt{x-3}-1\right)^2}-\sqrt{\left(\sqrt{x-3}-2\right)^2}\)

\(=\sqrt{x-3}-1-\sqrt{x-3}+2=1\)

b, \(D=\sqrt{m^2}-\sqrt{m^2-10m+25}\)

\(=m-\sqrt{\left(m-5\right)^2}\)

\(=m-m+5=5\)

Bài 2:

a, \(VT=\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x-2+2\sqrt{x-2}+1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(\sqrt{x-2}-1\right)\left(\sqrt{x-2}+1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(x-3\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x}+\sqrt{3}=VP\)

b, \(VT=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a+1-2\sqrt{a}}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\left(\frac{\sqrt{a}-1+\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}=VP\)