K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

8x3+36x2+54x+27

tại x =-4

=>8×(-4)3+36×(-4)2+54×(-4)+27

=8×(-64)+36×16+54×(-4)+27

=-512+576-216+27

=-125

13 tháng 7 2019

(4x-3)(16x2+12x+9)-x2(64x-4)

=4x(16x2+12x+9)- 3(16x2+12x+9)-x2(64x-4)

=(64x3+48x2+36x)-(48x2+36x+27)-(64x3-4x2)

=64x3+48x2+36x-48x2-36x-27-64x3+4x2

=(64x3-64x3)+(48x2-48x2+4x2)+(36x-36x)-27

=4x2-27

tại x=-1/4

=> 4×(-1/4)2-27

=4×1/16-27

=1/4-27

=-107/4

(ko bt cs đúng ko nx haha )

17 tháng 6 2017

chiều mai bn nộp thì làm luôn đi còn hỏi đáp nữa !!!!!!

17 tháng 6 2017

mình làm bài 2 trước nha:

a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y

                        =(a.y+a.y)-(b.y+b.y)

                         =2.a.y-2.b.y

                        =2.y.(a-b)

b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bài này đã có tại đây:

Cho biểu thức:  \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)Với ... - Hoc24

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Lời giải:

a.

\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)

\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)

b.

Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$

c. 

$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$

$\Leftrightarrow 4x^2=x-3$

$\Leftrightarrow 4x^2-x+3=0$

$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)

Vậy không tồn tại $x$

d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên

$\Leftrightarrow 4x^2\vdots x-3$

$\Leftrightarrow 4(x^2-9)+36\vdots x-3$

$\Leftrightarrow 36\vdots x-3$

$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$

Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.

e.

$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$

$\Leftrightarrow \frac{x^2}{x-3}>1$

$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$

$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)

$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$

 

8 tháng 6 2021

a, ĐKXĐ: x2-4≠0 ⇔ x≠±2

b, \(\dfrac{x^2-4x+4}{x^2-4}\)=\(\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)=\(\dfrac{x-2}{x+2}\)

c, |x|=3

TH1: x≥0 thì x=3 (TMĐK)

TH1: x<0 thì x=-3 (TMĐK)

Thay x=3 và biểu thức ta có:

\(\dfrac{3-2}{3+2}\)=\(\dfrac{1}{5}\)

Thay x=-3 và biểu thức ta có:

\(\dfrac{-3-2}{-3+2}\)=5

8 tháng 6 2021

bạn ơi câu d có giá trị bằng mấy vậy ??

9 tháng 6 2021

`a)ĐK:x^2-4 ne 0<=>x^2 ne 4`
`<=>x ne 2,x ne -2`
`b)A=(x^2-4x+4)/(x^2-4)`
`=(x-2)^2/((x-2)(x+2))`
`=(x-2)/(x+2)`
`c)|x|=3`
`<=>`  \(\left[ \begin{array}{l}x=3\\x=-3\end{array} \right.\) 
`<=>`  \(\left[ \begin{array}{l}A=\dfrac{3-2}{3+2}=\dfrac15\\x=\dfrac{-3-2}{-3+2}=5\end{array} \right.\) 
`d)A=2`
`=>x-2=2(x+2)`
`<=>x-2=2x+4`
`<=>x=-6`

9 tháng 6 2021

a, ĐKXĐ: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)

b, Ta có: \(\dfrac{x^2-4x+4}{x^2-4}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\) (*)

c, \(\left|x\right|=3\Rightarrow x=\pm3\)

_ Thay x = 3 vào (*), ta được: \(\dfrac{3-2}{3+2}=\dfrac{1}{5}\)

_ Thay x = -3 vào (*), ta được: \(\dfrac{-3-2}{-3+2}=5\)

d, Có: \(\dfrac{x-2}{x+2}=2\)

\(\Leftrightarrow x-2=2\left(x+2\right)\)

\(\Leftrightarrow x-2=2x+4\)

\(\Leftrightarrow x=-6\left(tm\right)\)

Vậy...

26 tháng 10 2021

a) \(A=\left(x-1\right).\left(x+1\right)+\left(x+2\right).\left(x^2+2x+4\right)-x.\left(x^2+x+2\right)\)

\(=x^2-1+x^3+2x^2+4x+2x^2+4x+8-x^3-x^2-2x\)

\(=\left(x^3-x^3\right)+\left(x^2+2x^2+2x^2-x^2\right)+\left(4x+4x-2x\right)+\left(-1+8\right)\)

\(=4x^2+6x+7\)

b) Thay vào ta được

\(A=4.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}+7=1+3+7=11\)

12 tháng 4 2022

a, Với x khác 1 

\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)

b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

Vậy với x khác 1 thì bth A luôn nhận gtri âm