Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
Bài 2 :
a) Sửa đề :
\(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(A=\sqrt{3}-1-\sqrt{3}\)
\(A=-1\)
b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(B=\sqrt{2}+1-\sqrt{2}+1\)
\(B=2\)
c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=2-\sqrt{3}+2+\sqrt{3}\)
\(C=4\)
d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(D=4+\sqrt{7}-\sqrt{7}\)
\(D=4\)
Bài 1 :
a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)
TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)
Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)
b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa
\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)
TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)
TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)
Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)
mik làm bài này
linh tinh
bn ơi
cho mik
xin 1 L-I-K-E
b,
d,
\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{\sqrt{5}-2}-\frac{2}{2+\sqrt{5}}\)
\(=\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}\)
\(=2\sqrt{5}+4-2\sqrt{5}+4\)
\(=8\)
\(=\sqrt{3}-1-\sqrt{7-2\sqrt{7}+1}\)
\(=\sqrt{3}-1-\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=\sqrt{3}-1-\sqrt{7}+1\)
\(=\sqrt{3}-\sqrt{7}\)