Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(A=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(\Rightarrow A^2=2-\sqrt{3}+2+\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=4-2\sqrt{4-3}=4-2=2\)
\(\Rightarrow A=-\sqrt{2}\)
b, Ta có : \(B=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(\Rightarrow B\sqrt{2}=\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2\)
\(=\sqrt{5+2\sqrt{5}+1}+\sqrt{9-2.3\sqrt{5}+5}-2\)
\(=\sqrt{5}+1+3-\sqrt{5}-2=2\)
\(\Rightarrow B=\sqrt{2}\)
\(\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}}{\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2.\sqrt{2}.1+1^2}}{\sqrt{3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\)
\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}+\dfrac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)^2}=\dfrac{1}{\sqrt{2}-1}+\dfrac{1}{\sqrt{2}+1}\)
\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2}+1-\sqrt{2}+1=2\)
\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)
\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)
\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)
\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)
\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)
\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)
\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)
a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)
\(=\sqrt{5}\)
d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)
\(=\sqrt{11+6\sqrt{2}}\)
\(=3+\sqrt{2}\)
A = \(\sqrt{3+2\sqrt{2}}-\sqrt{6+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{3+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}+3}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2+2\sqrt{3}\left(\sqrt{2}+1\right)+3}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}+1+\sqrt{3}\right)^2}\)
= \(\left|\sqrt{2}+1\right|-\left|\sqrt{2}+\sqrt{3}+1\right|\)
= \(\sqrt{2}+1-\sqrt{2}-\sqrt{3}-1\)
= \(-\sqrt{3}\)
\(a,\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}}{2+\sqrt{6}}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}\left(2+\sqrt{6}\right)+\sqrt{3}\left(2-\sqrt{6}\right)}{\left(2-\sqrt{6}\right)\left(2+\sqrt{2}\right)}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-3\sqrt{2}}{4-6}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{2}.\sqrt{3}}.\dfrac{4\sqrt{3}}{-2}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}-1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+\left(\sqrt{2}-\sqrt{3}-1\right)\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+2+\sqrt{6}-\sqrt{6}-3-\sqrt{2}-\sqrt{3}}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{-2}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=-\dfrac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2}+\sqrt{3}}.\sqrt{2-\sqrt{2}+\sqrt{3}}\)
\(\sqrt{(2+\sqrt{3}).(2+\sqrt{2}+\sqrt{3}).(2-\sqrt{2}+\sqrt{3})}\)
\(\sqrt{(2+\sqrt{3}).((2+\sqrt{3})^2-2)}\)
\(\sqrt{(2+\sqrt{3)}.(4+4\sqrt{3}+3-2)}\)
\(\sqrt{(2+\sqrt{3}).(5+4\sqrt{3})}\)
\(\sqrt{10+8\sqrt{3}+5\sqrt{3}+12}\)
\(\sqrt{22+13\sqrt{3}}\)