Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(A=\sqrt{5}-1-\sqrt{5}-1\)
\(A=-2\)
\(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(B=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(B=\sqrt{5}+2-\sqrt{5}+2\)
\(B=4\)
Sửa đề :
\(C=\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(C=\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(C=3-\sqrt{5}-3-\sqrt{5}\)
\(C=-2\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9+2.3\sqrt{2}+2}-\sqrt{9-2.3\sqrt{2}+2}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}-1\right)^2}=\sqrt{10}-1\)
b) \(\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
a) \(\sqrt{11-2\sqrt{10}}=\sqrt{1^2-2\sqrt{10}.1+\left(\sqrt{10}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{10}\right)^2}=\left|1-\sqrt{10}\right|=\sqrt{10}-1\) (Vì \(\sqrt{10}>\sqrt{1}=1\))
b) \(\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.\sqrt{7}+\left(\sqrt{7}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}=\left|\sqrt{2}-\sqrt{7}\right|=\sqrt{7}-\sqrt{2}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{1+2\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{1-2\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
= |1+căn 3| - |1- căn 3|
= 1 + căn 3 - căn 3 + 1
= 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)
b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)
\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)
\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+\sqrt{14}}{\sqrt{2}\left(\sqrt{6}+\sqrt{14}\right)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}+3+\sqrt{2}-\sqrt{3}-\sqrt{2}\)
\(=3\)
\(\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}+3-\sqrt{2}-\sqrt{3}\)
\(=3\)
(Tíck cho mìk vs nhé!)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Xét: \(\sqrt{2}< \sqrt{11+6\sqrt{2}}\)
=> \(\sqrt{2}-\sqrt{11+6\sqrt{2}}< 0\) (1)
và \(5>\sqrt{5}\) => \(5-\sqrt{5}>0\)
<=> \(2\sqrt{5-\sqrt{5}}>0\) => \(\sqrt{6+2\sqrt{5-\sqrt{5}}}>0\) (2)
Từ (1) và (2)
=> \(\frac{\sqrt{2}-\sqrt{11+6\sqrt{2}}}{\sqrt{6+2\sqrt{5-\sqrt{5}}}}< 0\)
Mà biểu thức trong căn phải có giá trị không âm
=> Mâu thuẫn
=> Căn thức không có giá trị
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(7+\sqrt{2}\right)^2}=3+\sqrt{2}-7-\sqrt{2}=-4\)
\(\sqrt{11+6\sqrt{2}}\) - \(\sqrt{51+14\sqrt{2}}\)
= -4