K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

N=2(2x + 5 )^2 - 3(1 + 4x )(1 - 4x)

= 2 (4x^2 + 20x + 25) - 3(1 - 16x^2)

= 8x^2 + 40x + 50 - 3 + 48x^2

= 56x^2 + 40x - 47

(.....????!!!!!!.....)

27 tháng 7 2017

\(=\frac{\left(x+1\right)^2}{\left(x-1\right)^2}:\frac{2\left(x+1\right)^2}{4\left(x-1\right)^2}=\frac{\left(x+1\right)^2}{\left(x-1\right)^2}.\frac{4\left(x-1\right)^2}{2\left(x+1\right)^2}=2\)

11 tháng 8 2016

a)

\(M=2+\sqrt{\left(2x\right)^2-2.2x.3+3^2}\)

\(\Rightarrow M=2+\sqrt{\left(2x-3\right)^2}\)

\(\Rightarrow M=2+2x-3\)

\(\Rightarrow M=2x-1\)

b)

(+) x=5/2

=> \(M=2.\frac{5}{2}-1=5-1=4\)

(+) x= - 1/5

=> \(M=2.\frac{\left(-1\right)}{5}-1=-\frac{2}{5}-1=-\frac{7}{5}\)

11 tháng 8 2016

ê căn (2x-3)^2=|2x-3| xét 2 th ra nhé

22 tháng 7 2019

ĐK: x ≥ 0,5

\(\sqrt{4x^2-4x+1}+\sqrt{4x^2+4x-1}\)

=\(\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x+1\right)^2}\)

=\(\left|2x-1\right|+\left|2x+1\right|\)

= 2x-1+2x+1

= 4x

26 tháng 10 2021

1) ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{x^2}=2x-5\\ \Rightarrow\left|x\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x=2x-5\\x=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

2) ĐKXĐ: \(x\ge3\)

\(\sqrt{25x^2-10x+1}=2x-6\\ \Rightarrow\left|5x-1\right|=2x-6\\ \Rightarrow\left[{}\begin{matrix}5x-1=2x-6\\5x-1=6-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

3) ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{25-10x+x^2}=2x-5\\ \Rightarrow\left|x-5\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x-5=2x-5\\x-5=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{10}{3}\left(tm\right)\end{matrix}\right.\)

4) ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{1-2x+x^2}=2x-1\\ \Rightarrow\left|x-1\right|=2x-1\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)

 

\(C=\dfrac{\sqrt{\dfrac{4x^2+4x+1}{x}}}{\sqrt{x}\cdot\left|2x^2-x-1\right|}=\dfrac{\left|2x+1\right|}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}\cdot\left|\left(x-1\right)\left(2x+1\right)\right|}\)

\(=\dfrac{1}{x\left|x-1\right|}\)

14 tháng 10 2021

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

14 tháng 10 2021

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

7 tháng 2 2021

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

7 tháng 2 2021

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

21 tháng 6 2019

\(1-\sqrt{2}x\) nha

NV
21 tháng 6 2019

\(x=\frac{1}{2}\left(\sqrt{2}-1\right)\)

\(\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow4x^2=3-2\sqrt{2}=1-4.\frac{1}{2}\left(\sqrt{2}-1\right)=1-4x\)

\(\Leftrightarrow4x^2+4x-1=0\)

\(\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=1^{19}=1\)

\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1+4}^3=\sqrt{4}^3=8\)

\(\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}\left(4x^2+4x-1\right)+\frac{1}{2}}}=\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}}}=\sqrt{2}-2x=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)

\(M=1+8+1=10\)