Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)
=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)
=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)
=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)
=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)
=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)
=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)
=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)
=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)
=\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)
=\(4-2\sqrt{4-3}\)
=\(4-2\)
=\(2\)
=>\(A=\sqrt{2}\)
\(=\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{x+y}{\sqrt{xy}}\right)\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x^2-y^2\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}\)
\(=\dfrac{\sqrt{xy}\left(x+y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{-\sqrt{xy}\left(x+y\right)}=-\sqrt{x}+\sqrt{y}\)(1)
Khi x=3 và \(y=4+2\sqrt{3}\) vào (1), ta được:
\(=-\sqrt{3}+\sqrt{4+2\sqrt{3}}=-\sqrt{3}+\sqrt{3}+1=1\)
\(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)
\(=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}\)
\(=\sqrt{y}-\sqrt{x}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)
a) \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)
\(C=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(C=\frac{x+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}\)
\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)
\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)
\(C=\frac{x+y-\sqrt{xy}}{\sqrt{xy}}\)
b)Giả sử \(C>1\)
\(\Leftrightarrow\frac{x+y-\sqrt{xy}}{\sqrt{xy}}>1\)
\(\Leftrightarrow\frac{x+y-\sqrt{xy}-\sqrt{xy}}{\sqrt{xy}}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\)( luôn đúng với mọi \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\))
Nhầm ĐKXĐ :\(\hept{\begin{cases}x>0\\y>0\\x\ne y\end{cases}}\)
ĐkXĐ \(x\ge0,y\ge0\)
Ta có \(A=\left(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right).\frac{1}{\left(x-y\right)}+\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=\left(x-2\sqrt{xy}+y\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}+\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right)+\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{\left(3\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x-y}\)
vậy với...... thì biểu thức đã cho đc rút gọn là ...