Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\frac{1}{6}\) = 0,1666666665
B) 0,1666669167
\(\frac{1}{6}\) < \(\frac{111111}{666665}\)
Bạn lấy tử chia cho mẫu là ra
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{5}{15}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
Dấu . là nhân nha
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
\(\frac{1.2.6.4.6.4.5.2}{2.3.6.8.6.2.2.2.8.10}=\frac{1}{96}\)
\(A=\frac{1}{1\times6\times6}+\frac{1}{2\times9\times8}+\frac{1}{3\times12\times10}+...+\frac{1}{98\times297\times200}\)
\(A=\frac{1}{1\times\left(2\times3\right)\times\left(2\times3\right)}+\frac{1}{2\times\left(3\times3\right)\times\left(2\times4\right)}+...+\frac{1}{98\times\left(99\times3\right)\times\left(100\times2\right)}\)
\(A=\frac{1}{6}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+...+\frac{1}{98\times99\times100}\right)\)
\(12\times A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+...+\frac{2}{98\times99\times100}\)
\(12\times A=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+...+\left(\frac{1}{98\times99}-\frac{1}{99\times100}\right)\)
\(12\times A=\frac{1}{1\times2}-\frac{1}{99\times100}=\frac{4949}{9900}\)
\(A=\frac{4949}{118800}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{38.60}\)
\(=\frac{1}{2.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\frac{19}{20}=\frac{19}{120}\)
\(\frac{5^2\times6^{11}\times16^2+6^2\times12^6\times15^2}{2\times6^{12}\times10^4-81^2\times960^3}\)
\(=\frac{5^2\times\left(2\times3\right)^{11}\times\left(2^4\right)^2+\left(2\times3\right)^2\times\left(2^2\times3\right)^6\times\left(3\times5\right)^2}{2\times\left(2\times3\right)^{12}\times\left(2\times5\right)^4-\left(3^4\right)^2\times\left(2^6\times3\times5\right)^3}\)
\(=\frac{5^2\times2^{19}\times3^{11}+2^{14}\times3^{10}\times5^3}{2^{17}\times5^4\times3^{12}-3^{11}\times2^{18}\times5^3}\)
\(=\frac{5^2\times3^{10}\times2^{14}\times\left(2^5\times3+5\right)}{2^{17}\times5^3\times3^{11}\times\left(5\times3-2\right)}\)
\(=\frac{2^5\times3+5}{2^3\times5\times3\times12}\)
\(=\frac{32\times3+5}{8\times15\times12}=\frac{96+5}{120\times12}=\frac{101}{1440}\)