Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-49}{78}\)<\(\dfrac{0}{78}\)=0=\(\dfrac{0}{-95}\)<\(\dfrac{64}{-95}\)
hông chắc nha :)
b/ sao mà so sánh cùng một lúc bốn phân số được bạn :(
Quy đồng ( đây ngu toán không logic )
a)\(\dfrac{3}{6};\dfrac{2}{6};\dfrac{4}{6}\Rightarrow\dfrac{4}{6}>\dfrac{3}{6}>\dfrac{2}{6}\)
b)\(\dfrac{16}{9};\dfrac{24}{13}=\dfrac{208}{117};\dfrac{216}{117}\Rightarrow\dfrac{216}{117}>\dfrac{208}{117}\)
c)(Trời ơi cái đề bài)
h)\(\dfrac{27}{82};\dfrac{26}{75}=\dfrac{2025}{6150};\dfrac{2132}{6150}\Rightarrow\dfrac{2025}{6150}< \dfrac{2132}{6150}\)
d)(Trời ơi giống câu c)
i)\(\dfrac{-49}{78};\dfrac{64}{-95}=\dfrac{-4655}{7410};\dfrac{4992}{7410}\Rightarrow\dfrac{-4655}{7410}< \dfrac{4992}{7410}\)
P/s : Tự kết luận mỗi câu
a,\(\dfrac{1}{2}=\dfrac{1.3}{2.3}=\dfrac{3}{6}\),\(\dfrac{1}{3}=\dfrac{1.2}{3.2}=\dfrac{2}{6}\),\(\dfrac{2}{3}=\dfrac{2.2}{3.2}=\dfrac{4}{6}\)
vì có mẫu chung là 6 nên ta so sánh tử\(\Rightarrow\)ta so sánh 3,2,4
vì 2<3<4\(\Rightarrow\)\(\dfrac{2}{6}< \dfrac{3}{6}< \dfrac{4}{6}\Rightarrow\dfrac{1}{3}< \dfrac{1}{2}< \dfrac{2}{3}\)
a, Vì \(-\dfrac{1}{2}< 0\) => \(-\dfrac{1}{2}\) là số nhỏ nhất trong 3 số
Ta có: \(\dfrac{4}{9}:\dfrac{3}{7}=\dfrac{4\cdot7}{3\cdot9}=\dfrac{28}{27}>1\)
\(\Rightarrow\dfrac{4}{9}>\dfrac{3}{7}>-\dfrac{1}{2}\)
e, \(\dfrac{3^{10}+1}{3^9+1}\) và \(\dfrac{3^9+1}{3^8+1}\)
Ta có: \(A=\dfrac{3^{10}+1}{3^9+1}>1>\dfrac{3^{10}+1+2}{3^9+1+2}=\dfrac{3^{10}+3}{3^9+3}=\dfrac{3\left(3^9+1\right)}{3\left(3^8+1\right)}\)
\(=\dfrac{3^9+1}{3^8+1}=B\)
\(\Rightarrow A>B\)
1: \(=\dfrac{15}{37}\cdot\dfrac{38}{41}-\dfrac{15}{37}\cdot\dfrac{74}{45}-\dfrac{38}{41}\cdot\dfrac{15}{37}-\dfrac{38}{41}\cdot\dfrac{82}{76}\)
\(=\dfrac{-2}{3}-1=-\dfrac{5}{3}\)
2: \(=\dfrac{47}{53}\cdot\dfrac{17}{3}-\dfrac{47}{53}\cdot\dfrac{53}{47}+\dfrac{17}{3}\cdot\dfrac{6}{17}-\dfrac{17}{3}\cdot\dfrac{47}{53}\)
\(=-1+2=1\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(B=\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(B=\dfrac{2}{3}:\dfrac{4}{5}\) ( Do \(\left\{{}\begin{matrix}1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\ne0\\1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\ne0\end{matrix}\right.\))
\(B=\dfrac{2}{3}\cdot\dfrac{5}{4}=\dfrac{2\cdot5}{3\cdot4}=\dfrac{5}{6}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(\Rightarrow\)\(B=\dfrac{2-\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(\Rightarrow B=\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{10}{12}=\dfrac{5}{6}\)
\(A=\dfrac{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2941}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{1943}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2941}}{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{1943}}\)
\(=\dfrac{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2941}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{1943}}.\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{1943}}{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2941}}\)
\(=\dfrac{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2941}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{1943}\right)}.\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{1943}\right)}{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2941}\right)}\)
\(=\dfrac{5}{3}.\dfrac{2}{4}=\dfrac{10}{12}=\dfrac{5}{6}\)
Vì đề bài không yêu cầu tính nên bn có thể không tính ra như mk cux đc!
2.A=\(\dfrac{43.11}{2011^{2013}}\)+\(\dfrac{79}{2011^{2013}}\)=\(\dfrac{43.11+79}{2011^{2013}}\)
B=\(\dfrac{79.11}{2011^{2013}}\)+\(\dfrac{43}{2011^{2013}}\)=\(\dfrac{79.11+43}{2011^{2013}}\)
Ta có: 43.11+79=43.(10+1)+79=43.10+43+79=430+122
79.11+43=79.(10+1)+43=79.10+79+43=790+122
Vì 430+122<790+122 nên 43.11+79<79.11+43 (1)
Mà 20112013<20112013 (2)
Từ (1) và (2) suy ra A<B
3. A=\(\dfrac{2010.2012}{2011.2011}\)
Vì B<1 nên B>\(\dfrac{2010}{2012}\)=\(\dfrac{2010.2012}{2012.2012}\)
Vì 2010.2012=2010.2012; 2011.2011<2012.2012 nên B>A
4. A=\(\dfrac{3n}{3\left(2n+1\right)}\)=\(\dfrac{3n}{6n+3}\)
Vì 6n+3=6n+3; 3n<3n+1 nên A<B
1/Ta co :
\(\dfrac{15}{7}.\left(\dfrac{1}{5}-\dfrac{46}{45}\right)+\dfrac{46}{45}.\left(\dfrac{15}{7}-\dfrac{45}{46}\right)\)
=\(\dfrac{15}{7}.\dfrac{1}{5}-\dfrac{15}{7}.\dfrac{46}{45}+\dfrac{46}{45}.\dfrac{15}{7}-\dfrac{46}{45}.\dfrac{45}{46}\)
=\(\dfrac{15}{7}.\left(\dfrac{1}{5}-\dfrac{46}{45}+\dfrac{46}{45}\right)-1\)
=\(\dfrac{15}{7}.\dfrac{1}{5}-1\)
=\(\dfrac{3}{7}-1=\dfrac{-4}{7}\)
2/Ta co
\(\dfrac{43}{47}.\left(\dfrac{18}{37}+\dfrac{47}{43}\right)-\dfrac{18}{3}.\left(\dfrac{43}{47}+\dfrac{37}{36}\right)\)
=\(\dfrac{43}{47}.\dfrac{18}{37}+\dfrac{43}{47}.\dfrac{47}{43}-\dfrac{18}{37}.\dfrac{43}{47}+\dfrac{18}{37}.\dfrac{37}{36}\)
=\(\dfrac{18}{37}.\left(\dfrac{43}{37}-\dfrac{43}{37}+\dfrac{37}{36}\right)+1\)
=\(\dfrac{18}{37}.\dfrac{37}{36}+1\)
=\(\dfrac{1}{2}+1=\dfrac{3}{2}\)
tick cho mk nha