Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Giả sử \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2+2\left|xy\right|+\left|y\right|^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\)\(x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow\)\(2\left|xy\right|\ge2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
\(b)\) Giả sử \(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|-\left|y\right|\right)^2\le\left|x-y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2-2\left|xy\right|+\left|y\right|^2\le\left(x-y\right)^2\)
\(\Leftrightarrow\)\(x^2-2\left|xy\right|+y^2\le x^2-2xy+y^2\)
\(\Leftrightarrow\)\(-2\left|xy\right|\le-2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
Chúc bạn học tốt ~
Ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (do \(x+y+z\ne0\))
\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Leftrightarrow x=y=z\)
Thay \(x=y=z\) vào \(N=\frac{x^{123}.y^{456}}{z^{579}}\), ta có :
\(N=\frac{x^{123}.x^{456}}{x^{579}}\)
\(\Leftrightarrow\frac{x^{579}}{x^{579}}=1\)
Vậy N = 1
Thôi động viên các bạn làm phần nào cũng 6 tích nhé. Làm bao nhiêu phần thì số tích nhân lên .
Xét \(x<4\Rightarrow |x-4|=4-x\)
\(|x-5|=5-x\)
Biểu thức \(A=4-x+5-x=9-2x\)
Xét \(4\leq x<5 \Rightarrow |x-4|=x-4\) và \(|x-5|=5-x\) thay vào \(A=1\)
Xét \(x\geq5\Rightarrow|x-4|=x-4\) và \(|x-5|=x-5\) thay vào \(A=2x-9\)
\(|x-5|\)luôn \(\ge0\)
\(\Rightarrow\hept{\begin{cases}|x-5|=x-5\\|x-5|=-\left(x-5\right)=-x+5\end{cases}}\)
\(|x-4|\)luôn \(\ge0\)
\(\Rightarrow\hept{\begin{cases}|x-4|=x-4\\|x-4|=-\left(x-4\right)=-x+4\end{cases}}\)
Ta có các trường hợp:
\(\hept{\begin{cases}\text{|x-5|+|x-4|}=\left(x-5\right)+\left(x-4\right)=x-5+x-4=2x-9\\\text{|x-5|+|x-4|}=\left(-x+5\right)+\left(x-4\right)=-x+5+x-4=1\end{cases}}\)
\(\hept{\begin{cases}\text{|x-5|+|x-4|}=\left(-x+4\right)+\left(x-5\right)=-x+4+x-5=-1\\\text{|x-5|+|x-4|}=\left(-x+4\right)+\left(-x+5\right)=-x+4-x-5=-2x-1\end{cases}}\)
\(D=90.10^k-10^{k+2}+10^{k+1}\)
=>\(D=9.10^{k+1}-10^{k+2}+10^{k+1}\)
=>\(D=10^{k+1}\left(9-10+1\right)\)
=>\(D=10^{k+1}.0\)
=>\(D=0\)