\(\dfrac{x+16}{x-4}\)+ \(\dfrac{5}{2-\sqrt{x}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\dfrac{x+16-5\sqrt{x}-10}{x-4}=\dfrac{x-5\sqrt{x}+6}{x-4}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

11 tháng 8 2018

\(a.\sqrt{1-4a+4a^2}-2a=\sqrt{\left(1-2a\right)^2}-2a=\left|1-2a\right|-2a\)

*\(a>\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=2a-1-2a=4a-1\)

* \(a\le\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=1-2a-2a=1-4a\)

\(b.x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)

* \(x\ge2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-x+2y=2x\)

* \(x< 2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-2y+x=2x-4y\)

\(c.x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{\left(x^2-4\right)^2}=x^2+\left|x^2-4\right|\)

* \(x^2-4\ge0\Rightarrow x^2+\left|x^2-4\right|=x^2+x^2-4=2x^2-4\)

* \(x^2-4< 0\Rightarrow x^2+\left|x^2-4\right|=x^2+4-x^2=4\)

\(d.2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

* \(x\ge5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1-1=2x-2\)

* \(x< 5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1+1=2x\)

\(e.\dfrac{\sqrt{x^4-4x^2+4}}{x^2-2}=\dfrac{\sqrt{\left(x^2-2\right)^2}}{x^2-2}=\dfrac{\left|x^2-2\right|}{x^2-2}\)

* \(x^2\ge2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=1\)

* \(x^2< 2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=-1\)

\(f.\sqrt{\left(x-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}=\left|x-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}=\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}\)

* \(x\ge4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=x-4+\dfrac{x-4}{x-4}=x-5\)

* \(x< 4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=4-x-1=5-x\)

1 tháng 8 2018

Bài 1:

a. ta có \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

=\(\sqrt{xy}\)

b.ĐK: x ≠ 1

Ta có: A= \(\sqrt{\dfrac{x+2\sqrt{x}+1}{x-2\sqrt{x}+1}}\)=\(\sqrt{\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2}}\)=\(\dfrac{\sqrt{x}+1}{\left|\sqrt{x}-1\right|}\)

*Nếu \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge1\)

⇒ A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

*Nếu \(\sqrt{x}-1< 0\Rightarrow\sqrt{x}< 1\)

⇒ A=\(\dfrac{\sqrt{x}+1}{-\sqrt{x}+1}\)

c.Ta có:

19 tháng 8 2018

e/ \(\left(x-4\right)\sqrt{16-8x+x^2}=\left(x-4\right)\sqrt{\left(x-4\right)^2}=\left(x-4\right)\left(x-4\right)=\left(x-4\right)^2\)

f/ \(\left(2x-5\right)\sqrt{\dfrac{2}{\left(2x-5\right)^2}}=\left(2x-5\right)\cdot\dfrac{1}{\left|2x-5\right|}\cdot\sqrt{2}\)

+) với \(x>\dfrac{5}{2}\) có: \(\left(2x-5\right)\cdot\dfrac{1}{\left|2x-5\right|}\cdot\sqrt{2}=\dfrac{2x-5}{2x-5}\cdot\sqrt{2}=\sqrt{2}\)

+) với \(x< \dfrac{5}{2}\) có:

\(\left(2x-5\right)\cdot\dfrac{1}{\left|2x-5\right|}\cdot\sqrt{2}=\dfrac{2x-5}{-\left(2x-5\right)}\cdot\sqrt{2}=-1\cdot\sqrt{2}=-\sqrt{2}\)

g/ \(\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4-2\cdot2\cdot\sqrt{2-4}+4}=\sqrt{\left(\sqrt{x-4}+2\right)^2}=\sqrt{x-4}+2\)

30 tháng 6 2018

có phải/....

1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)

\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)

2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

30 tháng 6 2018

1.B=\(\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2

30 tháng 7 2018

\(2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}=\left[{}\begin{matrix}2x-1-1=2x-2khix-5>0\\2x-1+1=2xkhix-5< 0\end{matrix}\right.\)

30 tháng 7 2018

b) \(\dfrac{\sqrt{x^2-4x+4}}{x^2-2}=\dfrac{\sqrt{\left(x-2\right)^2}}{x^2-2}=\left[{}\begin{matrix}\dfrac{x-2}{x^2-2}khix-2\ge0\\\dfrac{2-x}{x^2-2}khix-2\le0\end{matrix}\right.\)

2 tháng 5 2017

a) \(\dfrac{x^2-5}{x+\sqrt{5}}\)(với x khác -\(\sqrt{5}\)) =\(\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}\) = x-\(\sqrt{5}\) vậy \(\dfrac{x^2-5}{x+\sqrt{5}}\) = x-\(\sqrt{5}\) với x khác -\(\sqrt{5}\) b) \(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\) ( với x khác +-\(\sqrt{2}\) ) = \(\dfrac{\left(x+\sqrt{2}\right)^2}{\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)}\) =\(\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\) vậy \(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\) =\(\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\) với x khác +-\(\sqrt{2}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

24 tháng 4 2017

a. \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{2.3}{3^2}}=\dfrac{1}{3}.\sqrt{6}\)

b. \(\sqrt{\dfrac{x^2}{5}}=\sqrt{\dfrac{5x^2}{5^2}}=\dfrac{x}{5}.\sqrt{5}\) (vì x \(\ge\) 0)

c. \(\sqrt{\dfrac{3}{x}}=\sqrt{\dfrac{3.x}{x^2}}=\dfrac{1}{x}.\sqrt{3x}\) (vì x > 0)

d. \(\sqrt{x^2-\dfrac{x^2}{7}}=\sqrt{\dfrac{6x^2}{7}}=\sqrt{\dfrac{6x^2.7}{7.7}}=\sqrt{\dfrac{42.x^2}{7^2}}=-\dfrac{x}{7}.\sqrt{42}\) (vì x < 0)

31 tháng 3 2017

a) = . = . = vì x > 0.

Do đó = .

b) = . = ..

Vì y < 0 nên │y│= -y. Do đó = . = .

c) 5xy. = 5xy. = 5xy..

Vì x < 0, y > 0 nên = -x và = .

Do đó: 5xy = 5xy. = -.

d) 0,2 = = 0,2 =

Nếu x > 0 thì > 0 nên . Do đó 0,2 = .

Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.