Rút gọn:

B= 8/√x -2 - √x +26/x-4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2023

\(\dfrac{8}{\sqrt{x}-2}-\dfrac{\sqrt{x}+26}{x-4}\\ đk:x\ne4;x>0\\ =\dfrac{8\left(\sqrt{x}+2\right)-\sqrt{x}-26}{x-4}\\ =\dfrac{8\sqrt{x}+16-\sqrt{x}-26}{x-4}\\ =\dfrac{7\sqrt{x}-10}{x-4}\)

28 tháng 10 2017

\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)

\(B=\frac{2\left(x+4\right)+\sqrt{x}\left(\sqrt{x}-4\right)-8\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)

vậy \(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)

3 tháng 10 2018

a, đổi dấu ở phân số cuối để mẫu thành x-4

rồi sau quy đồng mẫu chung là x-4

bn sẽ rút gọn được

b, theo câu a ta có P = \(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x-2}\right)\left(\sqrt{x+2}\right)}\)

2 trường hợp

th1 tử và mẫu cùng dương

th2 

tử và mẫu cùng âm

c, thay x= 4 vào biểu thức đã rút gọn ở câu a

2 tháng 3 2018

a) \(P=\left(\frac{x+8}{x\sqrt{x}+8}-\frac{1}{\sqrt{x}+2}\right):\left(1-\frac{x-3\sqrt{x}+6}{x-2\sqrt{x}+4}\right)\)

\(P=\frac{x+8-x+\sqrt{x}-4}{x\sqrt{x}+8}:\frac{x-2\sqrt{x}+4-x+3\sqrt{x}-6}{x-2\sqrt{x}+4}\)

\(P=\frac{\sqrt{x}+4}{x\sqrt{x}+8}:\frac{\sqrt{x}-2}{x-2\sqrt{x}+4}\)

\(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}.\frac{1}{\sqrt{x}-2}\)

\(P=\frac{\sqrt{x}+4}{x-4}\)

b) Ta có \(x=6+4\sqrt{2}=2^2+2.2.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{2}\)

Suy ra \(P=\frac{2+\sqrt{2}+4}{6+4\sqrt{2}-4}=\frac{6+\sqrt{2}}{4\sqrt{2}+2}=\frac{11\sqrt{2}-2}{14}\)

2 tháng 3 2018

cô  Hoàng Thị Thu Huyền  ơi e thấy có j đó sai sai ở đây 

chỗ dòng thứ 2 phải là 

\(P=\left[\frac{8}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}-\frac{x-2\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\) 

vì theo hằng đẳng thức   A+ B3= (A+B)(A2- AB +B2)

30 tháng 5 2017

\(\hept{\begin{cases}\left(x+y\right)^2=16\\\left(x-y\right)^2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+2xy+y^2=16\\x^2-2xy+y^2\ge0\end{cases}\Leftrightarrow}x^2+y^2\ge8}\)

áp dụng AM - GM có:

\(P=x^2+y^2+\frac{12}{xy}\ge x^2+y^2+\frac{12}{\frac{x^2+y^2}{2}}=8+\frac{2.12}{8}=14\)

Vậy \(P_{min}\)=14 dấu "=" sảy ra khi : x=x=2

30 tháng 5 2017

Bài giải sai rồi

17 tháng 10 2019

\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)

\(=\left(2-\sqrt{3}\right)^2\)

\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)

\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)

\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

17 tháng 10 2019

\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)

\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)

\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)

=>pt vo nghiệm

d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)

\(\Leftrightarrow x=5\)

14 tháng 7 2018

ĐKXĐ:  \(x\ge0;x\ne1\)

mk chỉnh lại đề, đúng thì bạn tham khảo

\(P=\frac{x+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{x+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{18\sqrt{x}-22}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

7 tháng 7 2017

Bài 1 

ĐK \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

 A =\(\left(\frac{x^2-x+7}{\left(x+2\right)\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{2x}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{x^2-x+7+x-2}{\left(x+2\right)\left(x-2\right)}:\frac{x^2+4x+4-x^2+4x-4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2+5}{\left(x+2\right)\left(x-2\right)}.\frac{\left(x+2\right)\left(x-2\right)}{6x}=\frac{x^2+5}{6x}\)

b , \(A=1\Rightarrow\frac{x^2+5}{6x}=1\Rightarrow x^2-6x+5=0\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}\left(tm\right)}\)

Vậy x=1 hoặc  x=5

Bài 2.

a. \(B=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2+x\right)\left(2-x\right)}:\frac{x+3}{2-x}\)

\(=\frac{4x^2+8x}{\left(2+x\right)\left(2-x\right)}.\frac{2-x}{x+3}=\frac{2x}{x+3}\)

b.  \(B=\frac{2x}{x+3}=2-\frac{6}{x+3}\)

B nguyên \(\Leftrightarrow x+3\inƯ\left(-6\right)\Rightarrow x+3\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)

Vậy \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)thì B nguyên

1 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(P=\frac{x\sqrt{x}-8}{\sqrt{x}-2}-\frac{2x-\sqrt{x}}{\sqrt{x}}-5\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\sqrt{x}-2}-\frac{\left(2x-\sqrt{x}\right)\sqrt{x}}{x}-5\)

\(\Leftrightarrow P=x+2\sqrt{x}+4-\frac{x\left(2\sqrt{x}-1\right)}{x}-5\)

\(\Leftrightarrow P=x+2\sqrt{x}+4-2\sqrt{x}+1-5\)

\(\Leftrightarrow P=x\)