\(|x-2|-|x-3|\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn chia trường hợp ra: 

+, Th1:x<2=> /x-2/-/x-3/ =-(x-2)+(x-3) = -x+2+x-3=-1

+,Th2:x=2 =>...

+,Th3 2<x<3

+,Th4 x=3

+, Th5 x>3

4 tháng 1 2019

ghi hết đầu bài ra

4 tháng 1 2019

ghi rồi

12 tháng 3 2020

a) 

TH1:

x dương

=> |x|+x =2x

TH2: x âm

=> |x| +x =0

TH 3 :x=0

|x|+x=0

b)2|x|x-3|x|:x

TH1: x dương

2|x|x-3|x|:x

2x2-3

tương tự ...

22 tháng 6 2018

\(b)\) Ta có : 

\(C=\left|x+1\right|+\left|x-3\right|\)

\(C=\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=\left|4\right|=4\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(3-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x+1\ge0\\3-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le3\end{cases}\Leftrightarrow}-1\le x\le3}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x+1\le0\\3-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge3\end{cases}}}\) ( loại ) 

Vậy \(C=4\) khi \(-1\le x\le3\)

Chúc bạn học tốt ~ 

22 tháng 6 2018

a) 3/5

b) -2