Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:\hept{\begin{cases}x-2\ne0\\x^2-2x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\left(x-2\right)\ne0\Leftrightarrow x\ne0\end{cases}.}}\)
\(A=\left(\frac{x}{x-2}+\frac{2x}{x^2-2x}\right)\left(x^2+4\right)\)
\(=\left(\frac{x}{x-2}+\frac{2x}{x\left(x-2\right)}\right)\left(x^2+4\right)\)
\(=\frac{x+2}{x-2}.\left(x^2+4\right)\)(x^2-4 còn rút gọn đc thế này thì bó tay)
( Sai dấu )
ĐKXĐ
\(\hept{\begin{cases}x-2\ne0\\x\left(x-2\right)\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\) ( T/m đk )
\(A=\left(\frac{x}{x-2}+\frac{2x}{x^2-2x}\right).\left(x^2-4\right)\)
\(=\left[\frac{x}{x-2}+\frac{2x}{x\left(x-2\right)}\right]\left(x^2-4\right)\)
\(=\left[\frac{x}{x-2}+\frac{2}{\left(x-2\right)}\right]\left(x^2-4\right)\)
\(=\frac{x+2}{x-2}.\left(x^2-4\right)\)
\(=\frac{x+2.x^2+4}{x+2}=\frac{x+2}{x-2}.\left(x-2\right)\left(x+2\right)\)
\(=\frac{x+2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)}=\left(x+2\right)^2\)
a) Rút gọn :
Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x+y\right)^2-2x^2y-x^2\left(x^2-y^2\right)}{\left(x^2-y^2\right)^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x^2+2xy+y^2\right)-2x^2y-x^4+x^2y^2}{\left(x^2-y^2\right)^2}\right]\)
...
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
\(\frac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{\left(x-2\right)3\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)
\(\frac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}=\frac{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\frac{2x+1}{x+2}\)
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
\(A=\left(\frac{x-1}{x-2}+\frac{x+3}{x^2-4}\right):\left(\frac{x+2}{x-2}+\frac{1}{2-x}\right)\)
\(A=\frac{\left(x-1\right)\left(x+2\right)+x+3}{\left(x+2\right)\left(x-2\right)}:\left(\frac{x+2}{x-2}-\frac{1}{x-2}\right)\)
\(A=\frac{x^2+2x-x-2+x+3}{\left(x+2\right)\left(x-2\right)}:\frac{x+2-1}{x-2}\)
\(A=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}.\frac{x-2}{x+1}\)
\(A=\frac{\left(x+1\right)^2}{x+2}.\frac{1}{x+1}\)
\(A=\frac{x+1}{x+2}\)
\(A=\frac{2\left|x-4\right|}{x^2+x-20}\)
\(x^2+x-20=x^2-4x+5x-20\)
\(=x\left(x-4\right)+5\left(x-4\right)\)
\(=\left(x-4\right)\left(x+5\right)\)
Trường hợp 1 : \(x-4\ge0\Leftrightarrow x\ge4\)
\(\Rightarrow\)\(A=\frac{2\left(x-4\right)}{\left(x-4\right)\left(x+5\right)}=\frac{2}{x+5}\)
Trường hợp 2 : \(x-4< 0\Leftrightarrow x< 4\)
\(\Rightarrow\)\(A=\frac{2\left(4-x\right)}{\left(x-4\right)\left(x+5\right)}=\frac{-2}{x+5}\)
A = 2|x-4|/(x-4).(x+5)
Nếu x<4 thì |x-4| = -(x+4) => A = -2/x+%
Nếu x>=4 thì |x-4|=x-4 => A = 2/x+5
Vậy ........
k mk nha