Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)
\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)
\(=\dfrac{2a\left(x-1^2\right)}{5b\left(x-1\right)\left(1+x\right)}\)
\(=\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\)
\(b,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)
\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)
\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)
\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)
\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)
\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)
\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)
\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)
=x+y-z
\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
a) \(\frac{x^2-y^2}{\left(x+y\right)\left(ay-\text{ax}\right)}=\frac{\left(x+y\right)\left(x-y\right)}{-a\left(x+y\right)\left(x-y\right)}=\frac{-1}{a}\)
b) \(\frac{2ax-2x-3y+3ay}{4ax+\text{4x}+6y+6ay}=\frac{2x\left(a-1\right)+3y\left(a-1\right)}{\text{4x}\left(a+1\right)+6y\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(2x+3y\right)}{2\left(a+1\right)\left(2x+3y\right)}=\frac{a-1}{2\left(a+1\right)}\)
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
Ta có:
\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)
\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)
\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)
\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)
\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)
b/ Thế vô rồi tính nhé
Đoạn gần cuối thay y-x= 1 luôn
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)
\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\) giờ mới thay không biết đã tối giản chưa
\(a.\: 2a^2b\left(x+y\right)-4a^3b\left(-x-y\right)\\ =\left(x+y\right)\left(2a^2b+4a^3b\right)\\ =2a^2b\left(x+y\right)\left(1+2a\right)\)
\(b.\:-3a\left(x-y\right)-a^2\left(7-x\right)\\ =a\left(3y-3x-7a+ax\right)\)
B=\(\frac{5\left(x-y\right)-3\left(x-y\right)}{10\left(x-y\right)}\)
B=\(\frac{\left(x-y\right)\left(5-3\right)}{10\left(x-y\right)}\)
B= \(\frac{\left(x-y\right)2}{10\left(x-y\right)}\)
B= 5
vậy B=5