Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
rút gọn biểu thức
a) \(4x^2-\left(x+3\right).\left(x-5\right)+x\)
\(=4x^2-\left(x^2-5x+3x-15\right)+x\)
\(=4x^2-x^2+5x-3x+15+x\)
\(=3x^2+3x+15.\)
b) \(x.\left(x-5\right)-3x.\left(x+1\right)\)
\(=x^2-5x-\left(3x^2+3x\right)\)
\(=x^2-5x-3x^2-3x\)
\(=-2x^2-8x.\)
d) \(\left(x+3\right).\left(x-1\right)-\left(x-7\right).\left(x-6\right)\)
\(=x^2-x+3x-3-\left(x^2-6x-7x+42\right)\)
\(=x^2-x+3x-3-x^2+6x+7x-42\)
\(=15x-45.\)
Chúc bạn học tốt!
Bài2: phân tích đa thức thành nhân tử
\(a,x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(y+x-2\right)\)
\(b,x^3-5x^2+x-5\)
\(=x^2\left(x-5\right)+\left(x-5\right)\)
\(=\left(x+x-5\right)\left(x-x-5\right)\)
\(c,x^2-2xy+y^2-9\)
\(=\left(x^2-y^2\right)-3^2\)
\(=\left(x-y+3\right)\left(x-y-3\right)\)
chúc bạn học tốt !
a) A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
A = 6x^2 + 33x - 10x - 55 - 6x^2 - 23x - 21
A = -76
b) B = 4x(3x - 2) - 3x(4x + 1)
B = 12x^2 - 8x - 12x^2 - 3x
B = -11x
c) C = (x + 3)(x - 2) - (x - 1)^2
C = x^2 + x - 6 - x^2 + 2x - 1
C = 3x - 7
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)