K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
11 tháng 10 2023
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn nhé.
NT
1
11 tháng 9 2020
\(E=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)^2}.\sqrt{\left(\sqrt{10}-\sqrt{6}\right)^2}.\frac{4^2-15}{\sqrt{4+\sqrt{15}}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{10+6-2\sqrt{10}.\sqrt{6}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{16-2\sqrt{60}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{4\left(4-\sqrt{15}\right)}\)
\(=2\sqrt{\left(4+\sqrt{15}\right).\left(4-\sqrt{15}\right)}\)
\(=2\sqrt{16-15}=2\)
NY
0
NB
0
a: Ta có: \(\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}\)
\(=\dfrac{\sqrt{10}\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{5}-1\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2+\sqrt{3}}{2}\)
b) Ta có: \(\sqrt{\left(1-\sqrt{2006}\right)^2}\cdot\sqrt{2007+2\sqrt{2006}}\)
\(=\left(\sqrt{2006}-1\right)\left(\sqrt{2006}+1\right)\)
=2005